x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
asm_math.h - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\ogre\include\asm_math.h
旋转
特效
属性
历史版本
#ifndef __asm_math_H__ #define __asm_math_H__ #include "OgrePrerequisites.h" namespace Ogre { /*============================================================================= ASM math routines posted by davepermen et al on flipcode forums =============================================================================*/ const float pi = 4.0 * atan( 1.0 ); const float half_pi = 0.5 * pi; /*============================================================================= NO EXPLICIT RETURN REQUIRED FROM THESE METHODS!! =============================================================================*/ #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 # pragma warning( push ) # pragma warning( disable: 4035 ) #endif float asm_arccos( float r ) { // return half_pi + arctan( r / -sqr( 1.f - r * r ) ); #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 float asm_one = 1.f; float asm_half_pi = half_pi; __asm { fld r // r0 = r fld r // r1 = r0, r0 = r fmul r // r0 = r0 * r fsubr asm_one // r0 = r0 - 1.f fsqrt // r0 = sqrtf( r0 ) fchs // r0 = - r0 fdiv // r0 = r1 / r0 fld1 // {{ r0 = atan( r0 ) fpatan // }} fadd asm_half_pi // r0 = r0 + pi / 2 } // returns r0 #else return float( acos( r ) ); #endif } float asm_arcsin( float r ) { // return arctan( r / sqr( 1.f - r * r ) ); #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 const float asm_one = 1.f; __asm { fld r // r0 = r fld r // r1 = r0, r0 = r fmul r // r0 = r0 * r fsubr asm_one // r0 = r0 - 1.f fsqrt // r0 = sqrtf( r0 ) fdiv // r0 = r1 / r0 fld1 // {{ r0 = atan( r0 ) fpatan // }} } // returns r0 #else return float( asin( r ) ); #endif } float asm_arctan( float r ) { #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 __asm { fld r // r0 = r fld1 // {{ r0 = atan( r0 ) fpatan // }} } // returns r0 #else return float( atan( r ) ); #endif } float asm_sin( float r ) { #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 __asm { fld r // r0 = r fsin // r0 = sinf( r0 ) } // returns r0 #else return sin( r ); #endif } float asm_cos( float r ) { #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 __asm { fld r // r0 = r fcos // r0 = cosf( r0 ) } // returns r0 #else return cos( r ); #endif } float asm_tan( float r ) { #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 // return sin( r ) / cos( r ); __asm { fld r // r0 = r fsin // r0 = sinf( r0 ) fld r // r1 = r0, r0 = r fcos // r0 = cosf( r0 ) fdiv // r0 = r1 / r0 } // returns r0 #else return tan( r ); #endif } // returns a for a * a = r float asm_sqrt( float r ) { #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 __asm { fld r // r0 = r fsqrt // r0 = sqrtf( r0 ) } // returns r0 #else return sqrt( r ); #endif } // returns 1 / a for a * a = r // -- Use this for Vector normalisation!!! float asm_rsq( float r ) { #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 __asm { fld1 // r0 = 1.f fld r // r1 = r0, r0 = r fsqrt // r0 = sqrtf( r0 ) fdiv // r0 = r1 / r0 } // returns r0 #else return 1. / sqrt( r ); #endif } // returns 1 / a for a * a = r // Another version float apx_rsq( float r ) { #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 const float asm_dot5 = 0.5f; const float asm_1dot5 = 1.5f; __asm { fld r // r0 = r fmul asm_dot5 // r0 = r0 * .5f mov eax, r // eax = r shr eax, 0x1 // eax = eax >> 1 neg eax // eax = -eax add eax, 0x5F400000 // eax = eax & MAGICAL NUMBER mov r, eax // r = eax fmul r // r0 = r0 * r fmul r // r0 = r0 * r fsubr asm_1dot5 // r0 = 1.5f - r0 fmul r // r0 = r0 * r } // returns r0 #else return 1. / sqrt( r ); #endif } /* very MS-specific, commented out for now Finally the best InvSqrt implementation? Use for vector normalisation instead of 1/length() * x,y,z */ #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 __declspec(naked) float __fastcall InvSqrt(float fValue) { __asm { mov eax, 0be6eb508h mov dword ptr[esp-12],03fc00000h sub eax, dword ptr[esp + 4] sub dword ptr[esp+4], 800000h shr eax, 1 mov dword ptr[esp - 8], eax fld dword ptr[esp - 8] fmul st, st fld dword ptr[esp - 8] fxch st(1) fmul dword ptr[esp + 4] fld dword ptr[esp - 12] fld st(0) fsub st,st(2) fld st(1) fxch st(1) fmul st(3),st fmul st(3),st fmulp st(4),st fsub st,st(2) fmul st(2),st fmul st(3),st fmulp st(2),st fxch st(1) fsubp st(1),st fmulp st(1), st ret 4 } } #endif // returns a random number FORCEINLINE float asm_rand() { #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 #if 0 #if OGRE_COMP_VER >= 1300 static unsigned __int64 q = time( NULL ); _asm { movq mm0, q // do the magic MMX thing pshufw mm1, mm0, 0x1E paddd mm0, mm1 // move to integer memory location and free MMX movq q, mm0 emms } return float( q ); #endif #else // VC6 does not support pshufw return float( rand() ); #endif #else // GCC etc return float( rand() ); #endif } // returns the maximum random number FORCEINLINE float asm_rand_max() { #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 #if 0 #if OGRE_COMP_VER >= 1300 return (std::numeric_limits< unsigned __int64 >::max)(); return 9223372036854775807.0f; #endif #else // VC6 does not support unsigned __int64 return float( RAND_MAX ); #endif #else // GCC etc return float( RAND_MAX ); #endif } // returns log2( r ) / log2( e ) float asm_ln( float r ) { #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 const float asm_e = 2.71828182846f; const float asm_1_div_log2_e = .693147180559f; const float asm_neg1_div_3 = -.33333333333333333333333333333f; const float asm_neg2_div_3 = -.66666666666666666666666666667f; const float asm_2 = 2.f; int log_2 = 0; __asm { // log_2 = ( ( r >> 0x17 ) & 0xFF ) - 0x80; mov eax, r sar eax, 0x17 and eax, 0xFF sub eax, 0x80 mov log_2, eax // r = ( r & 0x807fffff ) + 0x3f800000; mov ebx, r and ebx, 0x807FFFFF add ebx, 0x3F800000 mov r, ebx // r = ( asm_neg1_div_3 * r + asm_2 ) * r + asm_neg2_div_3; // (1) fld r fmul asm_neg1_div_3 fadd asm_2 fmul r fadd asm_neg2_div_3 fild log_2 fadd fmul asm_1_div_log2_e } #else return log( r ); #endif } #if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 # pragma warning( pop ) #endif } // namespace #endif
asm_math.h
网页地址
文件地址
上一页 1/217
下一页
下载
( 7 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.