x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
OgreMatrix3.h - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\ogre\include\OgreMatrix3.h
旋转
特效
属性
历史版本
/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2006 Torus Knot Software Ltd Also see acknowledgements in Readme.html This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA, or go to http://www.gnu.org/copyleft/lesser.txt. You may alternatively use this source under the terms of a specific version of the OGRE Unrestricted License provided you have obtained such a license from Torus Knot Software Ltd. ----------------------------------------------------------------------------- */ #ifndef __Matrix3_H__ #define __Matrix3_H__ #include "OgrePrerequisites.h" #include "OgreVector3.h" // NB All code adapted from Wild Magic 0.2 Matrix math (free source code) // http://www.geometrictools.com/ // NOTE. The (x,y,z) coordinate system is assumed to be right-handed. // Coordinate axis rotation matrices are of the form // RX = 1 0 0 // 0 cos(t) -sin(t) // 0 sin(t) cos(t) // where t > 0 indicates a counterclockwise rotation in the yz-plane // RY = cos(t) 0 sin(t) // 0 1 0 // -sin(t) 0 cos(t) // where t > 0 indicates a counterclockwise rotation in the zx-plane // RZ = cos(t) -sin(t) 0 // sin(t) cos(t) 0 // 0 0 1 // where t > 0 indicates a counterclockwise rotation in the xy-plane. namespace Ogre { /** A 3x3 matrix which can represent rotations around axes. @note
All the code is adapted from the Wild Magic 0.2 Matrix library (http://www.geometrictools.com/).
@par The coordinate system is assumed to be
right-handed
. */ class _OgreExport Matrix3 { public: /** Default constructor. @note It does
NOT
initialize the matrix for efficiency. */ inline Matrix3 () {}; inline explicit Matrix3 (const Real arr[3][3]) { memcpy(m,arr,9*sizeof(Real)); } inline Matrix3 (const Matrix3& rkMatrix) { memcpy(m,rkMatrix.m,9*sizeof(Real)); } Matrix3 (Real fEntry00, Real fEntry01, Real fEntry02, Real fEntry10, Real fEntry11, Real fEntry12, Real fEntry20, Real fEntry21, Real fEntry22) { m[0][0] = fEntry00; m[0][1] = fEntry01; m[0][2] = fEntry02; m[1][0] = fEntry10; m[1][1] = fEntry11; m[1][2] = fEntry12; m[2][0] = fEntry20; m[2][1] = fEntry21; m[2][2] = fEntry22; } // member access, allows use of construct mat[r][c] inline Real* operator[] (size_t iRow) const { return (Real*)m[iRow]; } /*inline operator Real* () { return (Real*)m[0]; }*/ Vector3 GetColumn (size_t iCol) const; void SetColumn(size_t iCol, const Vector3& vec); void FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis); // assignment and comparison inline Matrix3& operator= (const Matrix3& rkMatrix) { memcpy(m,rkMatrix.m,9*sizeof(Real)); return *this; } bool operator== (const Matrix3& rkMatrix) const; inline bool operator!= (const Matrix3& rkMatrix) const { return !operator==(rkMatrix); } // arithmetic operations Matrix3 operator+ (const Matrix3& rkMatrix) const; Matrix3 operator- (const Matrix3& rkMatrix) const; Matrix3 operator* (const Matrix3& rkMatrix) const; Matrix3 operator- () const; // matrix * vector [3x3 * 3x1 = 3x1] Vector3 operator* (const Vector3& rkVector) const; // vector * matrix [1x3 * 3x3 = 1x3] _OgreExport friend Vector3 operator* (const Vector3& rkVector, const Matrix3& rkMatrix); // matrix * scalar Matrix3 operator* (Real fScalar) const; // scalar * matrix _OgreExport friend Matrix3 operator* (Real fScalar, const Matrix3& rkMatrix); // utilities Matrix3 Transpose () const; bool Inverse (Matrix3& rkInverse, Real fTolerance = 1e-06) const; Matrix3 Inverse (Real fTolerance = 1e-06) const; Real Determinant () const; // singular value decomposition void SingularValueDecomposition (Matrix3& rkL, Vector3& rkS, Matrix3& rkR) const; void SingularValueComposition (const Matrix3& rkL, const Vector3& rkS, const Matrix3& rkR); // Gram-Schmidt orthonormalization (applied to columns of rotation matrix) void Orthonormalize (); // orthogonal Q, diagonal D, upper triangular U stored as (u01,u02,u12) void QDUDecomposition (Matrix3& rkQ, Vector3& rkD, Vector3& rkU) const; Real SpectralNorm () const; // matrix must be orthonormal void ToAxisAngle (Vector3& rkAxis, Radian& rfAngle) const; inline void ToAxisAngle (Vector3& rkAxis, Degree& rfAngle) const { Radian r; ToAxisAngle ( rkAxis, r ); rfAngle = r; } void FromAxisAngle (const Vector3& rkAxis, const Radian& fRadians); #ifndef OGRE_FORCE_ANGLE_TYPES inline void ToAxisAngle (Vector3& rkAxis, Real& rfRadians) const { Radian r; ToAxisAngle ( rkAxis, r ); rfRadians = r.valueRadians(); } inline void FromAxisAngle (const Vector3& rkAxis, Real fRadians) { FromAxisAngle ( rkAxis, Radian(fRadians) ); } #endif//OGRE_FORCE_ANGLE_TYPES // The matrix must be orthonormal. The decomposition is yaw*pitch*roll // where yaw is rotation about the Up vector, pitch is rotation about the // Right axis, and roll is rotation about the Direction axis. bool ToEulerAnglesXYZ (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const; bool ToEulerAnglesXZY (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const; bool ToEulerAnglesYXZ (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const; bool ToEulerAnglesYZX (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const; bool ToEulerAnglesZXY (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const; bool ToEulerAnglesZYX (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const; void FromEulerAnglesXYZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); void FromEulerAnglesXZY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); void FromEulerAnglesYXZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); void FromEulerAnglesYZX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); void FromEulerAnglesZXY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); void FromEulerAnglesZYX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); #ifndef OGRE_FORCE_ANGLE_TYPES inline bool ToEulerAnglesXYZ (float& rfYAngle, float& rfPAngle, float& rfRAngle) const { Radian y, p, r; bool b = ToEulerAnglesXYZ(y,p,r); rfYAngle = y.valueRadians(); rfPAngle = p.valueRadians(); rfRAngle = r.valueRadians(); return b; } inline bool ToEulerAnglesXZY (float& rfYAngle, float& rfPAngle, float& rfRAngle) const { Radian y, p, r; bool b = ToEulerAnglesXZY(y,p,r); rfYAngle = y.valueRadians(); rfPAngle = p.valueRadians(); rfRAngle = r.valueRadians(); return b; } inline bool ToEulerAnglesYXZ (float& rfYAngle, float& rfPAngle, float& rfRAngle) const { Radian y, p, r; bool b = ToEulerAnglesYXZ(y,p,r); rfYAngle = y.valueRadians(); rfPAngle = p.valueRadians(); rfRAngle = r.valueRadians(); return b; } inline bool ToEulerAnglesYZX (float& rfYAngle, float& rfPAngle, float& rfRAngle) const { Radian y, p, r; bool b = ToEulerAnglesYZX(y,p,r); rfYAngle = y.valueRadians(); rfPAngle = p.valueRadians(); rfRAngle = r.valueRadians(); return b; } inline bool ToEulerAnglesZXY (float& rfYAngle, float& rfPAngle, float& rfRAngle) const { Radian y, p, r; bool b = ToEulerAnglesZXY(y,p,r); rfYAngle = y.valueRadians(); rfPAngle = p.valueRadians(); rfRAngle = r.valueRadians(); return b; } inline bool ToEulerAnglesZYX (float& rfYAngle, float& rfPAngle, float& rfRAngle) const { Radian y, p, r; bool b = ToEulerAnglesZYX(y,p,r); rfYAngle = y.valueRadians(); rfPAngle = p.valueRadians(); rfRAngle = r.valueRadians(); return b; } inline void FromEulerAnglesXYZ (float fYAngle, float fPAngle, float fRAngle) { FromEulerAnglesXYZ ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) ); } inline void FromEulerAnglesXZY (float fYAngle, float fPAngle, float fRAngle) { FromEulerAnglesXZY ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) ); } inline void FromEulerAnglesYXZ (float fYAngle, float fPAngle, float fRAngle) { FromEulerAnglesYXZ ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) ); } inline void FromEulerAnglesYZX (float fYAngle, float fPAngle, float fRAngle) { FromEulerAnglesYZX ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) ); } inline void FromEulerAnglesZXY (float fYAngle, float fPAngle, float fRAngle) { FromEulerAnglesZXY ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) ); } inline void FromEulerAnglesZYX (float fYAngle, float fPAngle, float fRAngle) { FromEulerAnglesZYX ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) ); } #endif//OGRE_FORCE_ANGLE_TYPES // eigensolver, matrix must be symmetric void EigenSolveSymmetric (Real afEigenvalue[3], Vector3 akEigenvector[3]) const; static void TensorProduct (const Vector3& rkU, const Vector3& rkV, Matrix3& rkProduct); static const Real EPSILON; static const Matrix3 ZERO; static const Matrix3 IDENTITY; protected: // support for eigensolver void Tridiagonal (Real afDiag[3], Real afSubDiag[3]); bool QLAlgorithm (Real afDiag[3], Real afSubDiag[3]); // support for singular value decomposition static const Real ms_fSvdEpsilon; static const unsigned int ms_iSvdMaxIterations; static void Bidiagonalize (Matrix3& kA, Matrix3& kL, Matrix3& kR); static void GolubKahanStep (Matrix3& kA, Matrix3& kL, Matrix3& kR); // support for spectral norm static Real MaxCubicRoot (Real afCoeff[3]); Real m[3][3]; // for faster access friend class Matrix4; }; } #endif
OgreMatrix3.h
网页地址
文件地址
上一页
91/217
下一页
下载
( 11 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.