x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
OgreRadixSort.h - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\ogre\include\OgreRadixSort.h
旋转
特效
属性
历史版本
/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2006 Torus Knot Software Ltd Also see acknowledgements in Readme.html This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA, or go to http://www.gnu.org/copyleft/lesser.txt. You may alternatively use this source under the terms of a specific version of the OGRE Unrestricted License provided you have obtained such a license from Torus Knot Software Ltd. ----------------------------------------------------------------------------- */ #ifndef __RadixSort_H__ #define __RadixSort_H__ #include "OgrePrerequisites.h" namespace Ogre { /** Class for performing a radix sort (fast comparison-less sort based on byte value) on various standard STL containers. @remarks A radix sort is a very fast sort algorithm. It doesn't use comparisons and thus is able to break the theoretical minimum O(N*logN) complexity. Radix sort is complexity O(k*N), where k is a constant. Note that radix sorting is not in-place, it requires additional storage, so it trades memory for speed. The overhead of copying means that it is only faster for fairly large datasets, so you are advised to only use it for collections of at least a few hundred items. @par This is a template class to allow it to deal with a variety of containers, and a variety of value types to sort on. In addition to providing the container and value type on construction, you also need to supply a functor object which will retrieve the value to compare on for each item in the list. For example, if you had an std::vector of by-value instances of an object of class 'Bibble', and you wanted to sort on Bibble::getDoobrie(), you'd have to firstly create a functor like this: @code struct BibbleSortFunctor { float operator()(const Bibble& val) const { return val.getDoobrie(); } } @endcode Then, you need to declare a RadixSort class which names the container type, the value type in the container, and the type of the value you want to sort by. You can then call the sort function. E.g. @code RadixSort
radixSorter; BibbleSortFunctor functor; radixSorter.sort(myBibbleList, functor); @endcode You should try to reuse RadixSort instances, since repeated allocation of the internal storage is then avoided. @note Radix sorting is often associated with just unsigned integer values. Our implementation can handle both unsigned and signed integers, as well as floats (which are often not supported by other radix sorters). doubles are not supported; you will need to implement your functor object to convert to float if you wish to use this sort routine. */ template
class RadixSort { public: typedef typename TContainer::iterator ContainerIter; protected: /// Alpha-pass counters of values (histogram) /// 4 of them so we can radix sort a maximum of a 32bit value int mCounters[4][256]; /// Beta-pass offsets int mOffsets[256]; /// Sort area size int mSortSize; /// Number of passes for this type int mNumPasses; struct SortEntry { TCompValueType key; ContainerIter iter; SortEntry() {} SortEntry(TCompValueType k, ContainerIter it) : key(k), iter(it) {} }; /// Temp sort storage std::vector
mSortArea1; std::vector
mSortArea2; std::vector
* mSrc; std::vector
* mDest; TContainer mTmpContainer; // initial copy void sortPass(int byteIndex) { // Calculate offsets // Basically this just leaves gaps for duplicate entries to fill mOffsets[0] = 0; for (int i = 1; i < 256; ++i) { mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; } // Sort pass for (int i = 0; i < mSortSize; ++i) { unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key); (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i]; } } template
void finalPass(int byteIndex, T val) { // default is to do normal pass sortPass(byteIndex); } // special case signed int void finalPass(int byteIndex, int val) { int numNeg = 0; // all negative values are in entries 128+ in most significant byte for (int i = 128; i < 256; ++i) { numNeg += mCounters[byteIndex][i]; } // Calculate offsets - positive ones start at the number of negatives // do positive numbers mOffsets[0] = numNeg; for (int i = 1; i < 128; ++i) { mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; } // Do negative numbers (must start at zero) // No need to invert ordering, already correct (-1 is highest number) mOffsets[128] = 0; for (int i = 129; i < 256; ++i) { mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; } // Sort pass for (int i = 0; i < mSortSize; ++i) { unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key); (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i]; } } // special case float void finalPass(int byteIndex, float val) { // floats need to be special cased since negative numbers will come // after positives (high bit = sign) and will be in reverse order // (no ones-complement of the +ve value) int numNeg = 0; // all negative values are in entries 128+ in most significant byte for (int i = 128; i < 256; ++i) { numNeg += mCounters[byteIndex][i]; } // Calculate offsets - positive ones start at the number of negatives // do positive numbers normally mOffsets[0] = numNeg; for (int i = 1; i < 128; ++i) { mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; } // Do negative numbers (must start at zero) // Also need to invert ordering // In order to preserve the stability of the sort (essential since // we rely on previous bytes already being sorted) we have to count // backwards in our offsets from mOffsets[255] = mCounters[byteIndex][255]; for (int i = 254; i > 127; --i) { mOffsets[i] = mOffsets[i+1] + mCounters[byteIndex][i]; } // Sort pass for (int i = 0; i < mSortSize; ++i) { unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key); if (byteVal > 127) { // -ve; pre-decrement since offsets set to count (*mDest)[--mOffsets[byteVal]] = (*mSrc)[i]; } else { // +ve (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i]; } } } inline unsigned char getByte(int byteIndex, TCompValueType val) { #if OGRE_ENDIAN == OGRE_ENDIAN_LITTLE return ((unsigned char*)(&val))[byteIndex]; #else return ((unsigned char*)(&val))[mNumPasses - byteIndex - 1]; #endif } public: RadixSort() {} ~RadixSort() {} /** Main sort function @param container A container of the type you declared when declaring @param func A functor which returns the value for comparison when given a container value */ template
void sort(TContainer& container, TFunction func) { if (container.empty()) return; // Set up the sort areas mSortSize = static_cast
(container.size()); mSortArea1.resize(container.size()); mSortArea2.resize(container.size()); // Copy data now (we need constant iterators for sorting) mTmpContainer = container; mNumPasses = sizeof(TCompValueType); // Counter pass // Initialise the counts int p; for (p = 0; p < mNumPasses; ++p) memset(mCounters[p], 0, sizeof(int) * 256); // Perform alpha pass to count ContainerIter i = mTmpContainer.begin(); TCompValueType prevValue = func.operator()(*i); bool needsSorting = false; for (int u = 0; i != mTmpContainer.end(); ++i, ++u) { // get sort value TCompValueType val = func.operator()(*i); // cheap check to see if needs sorting (temporal coherence) if (!needsSorting && val < prevValue) needsSorting = true; // Create a sort entry mSortArea1[u].key = val; mSortArea1[u].iter = i; // increase counters for (p = 0; p < mNumPasses; ++p) { unsigned char byteVal = getByte(p, val); mCounters[p][byteVal]++; } prevValue = val; } // early exit if already sorted if (!needsSorting) return; // Sort passes mSrc = &mSortArea1; mDest = &mSortArea2; for (p = 0; p < mNumPasses - 1; ++p) { sortPass(p); // flip src/dst std::vector
* tmp = mSrc; mSrc = mDest; mDest = tmp; } // Final pass may differ, make polymorphic finalPass(p, prevValue); // Copy everything back int c = 0; for (i = container.begin(); i != container.end(); ++i, ++c) { *i = *((*mDest)[c].iter); } } }; } #endif
OgreRadixSort.h
网页地址
文件地址
上一页
140/217
下一页
下载
( 9 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.