x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
sgtree.hpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\intrusive\sgtree.hpp
旋转
特效
属性
历史版本
///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2007 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// // // The option that yields to non-floating point 1/sqrt(2) alpha is taken // from the scapegoat tree implementation of the PSPP library. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_SGTREE_HPP #define BOOST_INTRUSIVE_SGTREE_HPP #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace boost { namespace intrusive { /// @cond namespace detail{ //! Returns floor(log(n)/log(sqrt(2))) -> floor(2*log2(n)) //! Undefined if N is 0. //! //! This function does not use float point operations. inline std::size_t calculate_h_sqrt2 (std::size_t n) { std::size_t f_log2 = detail::floor_log2(n); return (2*f_log2) + (n >= detail::sqrt2_pow_2xplus1 (f_log2)); } struct h_alpha_sqrt2_t { h_alpha_sqrt2_t(void){} std::size_t operator()(std::size_t n) const { return calculate_h_sqrt2(n); } }; struct alpha_0_75_by_max_size_t { alpha_0_75_by_max_size_t(void){} std::size_t operator()(std::size_t max_tree_size) const { const std::size_t max_tree_size_limit = ((~std::size_t(0))/std::size_t(3)); return max_tree_size > max_tree_size_limit ? max_tree_size/4*3 : max_tree_size*3/4; } }; struct h_alpha_t { h_alpha_t(float inv_minus_logalpha) : inv_minus_logalpha_(inv_minus_logalpha) {} std::size_t operator()(std::size_t n) const { //Returns floor(log1/alpha(n)) -> // floor(log(n)/log(1/alpha)) -> // floor(log(n)/(-log(alpha))) //return static_cast
(std::log(float(n))*inv_minus_logalpha_); return static_cast
(detail::fast_log2(float(n))*inv_minus_logalpha_); } private: //Since the function will be repeatedly called //precalculate constant data to avoid repeated //calls to log and division. //This will store 1/(-std::log(alpha_)) float inv_minus_logalpha_; }; struct alpha_by_max_size_t { alpha_by_max_size_t(float alpha) : alpha_(alpha) {} float operator()(std::size_t max_tree_size) const { return float(max_tree_size)*alpha_; } private: float alpha_; float inv_minus_logalpha_; }; template
struct alpha_holder { typedef boost::intrusive::detail::h_alpha_t h_alpha_t; typedef boost::intrusive::detail::alpha_by_max_size_t multiply_by_alpha_t; alpha_holder() { set_alpha(0.7f); } float get_alpha() const { return alpha_; } void set_alpha(float alpha) { alpha_ = alpha; inv_minus_logalpha_ = 1/(-detail::fast_log2(alpha)); } h_alpha_t get_h_alpha_t() const { return h_alpha_t(inv_minus_logalpha_); } multiply_by_alpha_t get_multiply_by_alpha_t() const { return multiply_by_alpha_t(alpha_); } private: float alpha_; float inv_minus_logalpha_; }; template<> struct alpha_holder
{ //This specialization uses alpha = 1/sqrt(2) //without using floating point operations //Downside: alpha CAN't be changed. typedef boost::intrusive::detail::h_alpha_sqrt2_t h_alpha_t; typedef boost::intrusive::detail::alpha_0_75_by_max_size_t multiply_by_alpha_t; float get_alpha() const { return 0.70710677f; } void set_alpha(float) { //alpha CAN't be changed. assert(0); } h_alpha_t get_h_alpha_t() const { return h_alpha_t(); } multiply_by_alpha_t get_multiply_by_alpha_t() const { return multiply_by_alpha_t(); } }; } //namespace detail{ template
struct sg_setopt { typedef ValueTraits value_traits; typedef Compare compare; typedef SizeType size_type; static const bool floating_point = FloatingPoint; }; template
struct sg_set_defaults : pack_options < none , base_hook < typename detail::eval_if_c < internal_default_bs_set_hook
::value , get_default_bs_set_hook
, detail::identity
>::type > , floating_point
, size_type
, compare
> >::type {}; /// @endcond //! The class template sgtree is an intrusive scapegoat tree container, that //! is used to construct intrusive sg_set and sg_multiset containers. //! The no-throw guarantee holds only, if the value_compare object //! doesn't throw. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c floating_point<>, \c size_type<> and //! \c compare<>. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif class sgtree_impl { public: typedef typename Config::value_traits value_traits; /// @cond static const bool external_value_traits = detail::external_value_traits_is_true
::value; typedef typename detail::eval_if_c < external_value_traits , detail::eval_value_traits
, detail::identity
>::type real_value_traits; /// @endcond typedef typename real_value_traits::pointer pointer; typedef typename real_value_traits::const_pointer const_pointer; typedef typename std::iterator_traits
::value_type value_type; typedef value_type key_type; typedef typename std::iterator_traits
::reference reference; typedef typename std::iterator_traits
::reference const_reference; typedef typename std::iterator_traits
::difference_type difference_type; typedef typename Config::size_type size_type; typedef typename Config::compare value_compare; typedef value_compare key_compare; typedef tree_iterator
iterator; typedef tree_iterator
const_iterator; typedef std::reverse_iterator
reverse_iterator; typedef std::reverse_iterator
const_reverse_iterator; typedef typename real_value_traits::node_traits node_traits; typedef typename node_traits::node node; typedef typename boost::pointer_to_other
::type node_ptr; typedef typename boost::pointer_to_other
::type const_node_ptr; typedef sgtree_algorithms
node_algorithms; static const bool floating_point = Config::floating_point; static const bool constant_time_size = true; static const bool stateful_value_traits = detail::store_cont_ptr_on_it
::value; /// @cond private: typedef detail::size_holder
size_traits; typedef detail::alpha_holder
alpha_traits; typedef typename alpha_traits::h_alpha_t h_alpha_t; typedef typename alpha_traits::multiply_by_alpha_t multiply_by_alpha_t; //noncopyable sgtree_impl (const sgtree_impl&); sgtree_impl operator =(const sgtree_impl&); enum { safemode_or_autounlink = (int)real_value_traits::link_mode == (int)auto_unlink || (int)real_value_traits::link_mode == (int)safe_link }; BOOST_STATIC_ASSERT(((int)real_value_traits::link_mode != (int)auto_unlink)); //BOOST_STATIC_ASSERT(( // (int)real_value_traits::link_mode != (int)auto_unlink || // !floating_point // )); struct header_plus_alpha : public alpha_traits { node header_; }; struct node_plus_pred_t : public detail::ebo_functor_holder
{ node_plus_pred_t(const value_compare &comp) : detail::ebo_functor_holder
(comp) {} header_plus_alpha header_plus_alpha_; size_traits size_traits_; }; struct data_t : public sgtree_impl::value_traits { typedef typename sgtree_impl::value_traits value_traits; data_t(const value_compare & comp, const value_traits &val_traits) : value_traits(val_traits), node_plus_pred_(comp) , max_tree_size_(0) {} node_plus_pred_t node_plus_pred_; size_type max_tree_size_; } data_; float priv_alpha() const { return this->priv_alpha_traits().get_alpha(); } void priv_alpha(float alpha) { return this->priv_alpha_traits().set_alpha(alpha); } const value_compare &priv_comp() const { return data_.node_plus_pred_.get(); } value_compare &priv_comp() { return data_.node_plus_pred_.get(); } const node &priv_header() const { return data_.node_plus_pred_.header_plus_alpha_.header_; } node &priv_header() { return data_.node_plus_pred_.header_plus_alpha_.header_; } static node_ptr uncast(const_node_ptr ptr) { return node_ptr(const_cast
(detail::get_pointer(ptr))); } size_traits &priv_size_traits() { return data_.node_plus_pred_.size_traits_; } const size_traits &priv_size_traits() const { return data_.node_plus_pred_.size_traits_; } alpha_traits &priv_alpha_traits() { return data_.node_plus_pred_.header_plus_alpha_; } const alpha_traits &priv_alpha_traits() const { return data_.node_plus_pred_.header_plus_alpha_; } const real_value_traits &get_real_value_traits(detail::bool_
) const { return data_; } const real_value_traits &get_real_value_traits(detail::bool_
) const { return data_.get_value_traits(*this); } real_value_traits &get_real_value_traits(detail::bool_
) { return data_; } real_value_traits &get_real_value_traits(detail::bool_
) { return data_.get_value_traits(*this); } h_alpha_t get_h_alpha_func() const { return priv_alpha_traits().get_h_alpha_t(); } multiply_by_alpha_t get_alpha_by_max_size_func() const { return priv_alpha_traits().get_multiply_by_alpha_t(); } /// @endcond public: const real_value_traits &get_real_value_traits() const { return this->get_real_value_traits(detail::bool_
()); } real_value_traits &get_real_value_traits() { return this->get_real_value_traits(detail::bool_
()); } typedef typename node_algorithms::insert_commit_data insert_commit_data; //!
Effects
: Constructs an empty tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing unless the copy constructor of the value_compare object throws. sgtree_impl( value_compare cmp = value_compare() , const value_traits &v_traits = value_traits()) : data_(cmp, v_traits) { node_algorithms::init_header(&priv_header()); this->priv_size_traits().set_size(size_type(0)); } //!
Requires
: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //!
Effects
: Constructs an empty tree and inserts elements from //! [b, e). //! //!
Complexity
: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is the distance between first and last. //! //!
Throws
: Nothing unless the copy constructor of the value_compare object throws. template
sgtree_impl( bool unique, Iterator b, Iterator e , value_compare cmp = value_compare() , const value_traits &v_traits = value_traits()) : data_(cmp, v_traits) { node_algorithms::init_header(&priv_header()); this->priv_size_traits().set_size(size_type(0)); if(unique) this->insert_unique(b, e); else this->insert_equal(b, e); } //!
Effects
: Detaches all elements from this. The objects in the set //! are not deleted (i.e. no destructors are called), but the nodes according to //! the value_traits template parameter are reinitialized and thus can be reused. //! //!
Complexity
: Linear to elements contained in *this. //! //!
Throws
: Nothing. ~sgtree_impl() { this->clear(); } //!
Effects
: Returns an iterator pointing to the beginning of the tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator begin() { return iterator (node_traits::get_left(node_ptr(&priv_header())), this); } //!
Effects
: Returns a const_iterator pointing to the beginning of the tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator begin() const { return cbegin(); } //!
Effects
: Returns a const_iterator pointing to the beginning of the tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cbegin() const { return const_iterator (node_traits::get_left(const_node_ptr(&priv_header())), this); } //!
Effects
: Returns an iterator pointing to the end of the tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator end() { return iterator (node_ptr(&priv_header()), this); } //!
Effects
: Returns a const_iterator pointing to the end of the tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator end() const { return cend(); } //!
Effects
: Returns a const_iterator pointing to the end of the tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cend() const { return const_iterator (uncast(const_node_ptr(&priv_header())), this); } //!
Effects
: Returns a reverse_iterator pointing to the beginning of the //! reversed tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. reverse_iterator rbegin() { return reverse_iterator(end()); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator crbegin() const { return const_reverse_iterator(end()); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. reverse_iterator rend() { return reverse_iterator(begin()); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed tree. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator crend() const { return const_reverse_iterator(begin()); } //!
Precondition
: end_iterator must be a valid end iterator //! of sgtree. //! //!
Effects
: Returns a const reference to the sgtree associated to the end iterator //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. static sgtree_impl &container_from_end_iterator(iterator end_iterator) { return priv_container_from_end_iterator(end_iterator); } //!
Precondition
: end_iterator must be a valid end const_iterator //! of sgtree. //! //!
Effects
: Returns a const reference to the sgtree associated to the end iterator //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. static const sgtree_impl &container_from_end_iterator(const_iterator end_iterator) { return priv_container_from_end_iterator(end_iterator); } //!
Effects
: Returns the value_compare object used by the tree. //! //!
Complexity
: Constant. //! //!
Throws
: If value_compare copy-constructor throws. value_compare value_comp() const { return priv_comp(); } //!
Effects
: Returns true is the container is empty. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. bool empty() const { return node_algorithms::unique(const_node_ptr(&priv_header())); } //!
Effects
: Returns the number of elements stored in the tree. //! //!
Complexity
: Linear to elements contained in *this. //! //!
Throws
: Nothing. size_type size() const { if(constant_time_size) return this->priv_size_traits().get_size(); else{ return (size_type)node_algorithms::size(const_node_ptr(&priv_header())); } } //!
Effects
: Swaps the contents of two multisets. //! //!
Complexity
: Constant. //! //!
Throws
: If the comparison functor's swap call throws. void swap(sgtree_impl& other) { //This can throw using std::swap; swap(priv_comp(), priv_comp()); swap(priv_alpha_traits(), priv_alpha_traits()); swap(data_.max_tree_size_, other.data_.max_tree_size_); //These can't throw node_algorithms::swap_tree(node_ptr(&priv_header()), node_ptr(&other.priv_header())); if(constant_time_size){ size_type backup = this->priv_size_traits().get_size(); this->priv_size_traits().set_size(other.priv_size_traits().get_size()); other.priv_size_traits().set_size(backup); } } //!
Requires
: value must be an lvalue //! //!
Effects
: Inserts value into the tree before the upper bound. //! //!
Complexity
: Average complexity for insert element is at //! most logarithmic. //! //!
Throws
: Nothing. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_equal(reference value) { detail::key_nodeptr_comp
key_node_comp(priv_comp(), this); node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); this->priv_size_traits().increment(); std::size_t max_tree_size = (std::size_t)data_.max_tree_size_; node_ptr p = node_algorithms::insert_equal_upper_bound (node_ptr(&priv_header()), to_insert, key_node_comp , (size_type)this->size(), this->get_h_alpha_func(), max_tree_size); data_.max_tree_size_ = (size_type)max_tree_size; return iterator(p, this); } //!
Requires
: value must be an lvalue, and "hint" must be //! a valid iterator. //! //!
Effects
: Inserts x into the tree, using "hint" as a hint to //! where it will be inserted. If "hint" is the upper_bound //! the insertion takes constant time (two comparisons in the worst case) //! //!
Complexity
: Logarithmic in general, but it is amortized //! constant time if t is inserted immediately before hint. //! //!
Throws
: Nothing. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_equal(const_iterator hint, reference value) { detail::key_nodeptr_comp
key_node_comp(priv_comp(), this); node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); this->priv_size_traits().increment(); std::size_t max_tree_size = (std::size_t)data_.max_tree_size_; node_ptr p = node_algorithms::insert_equal (node_ptr(&priv_header()), hint.pointed_node(), to_insert, key_node_comp , (std::size_t)this->size(), this->get_h_alpha_func(), max_tree_size); data_.max_tree_size_ = (size_type)max_tree_size; return iterator(p, this); } //!
Requires
: Dereferencing iterator must yield an lvalue //! of type value_type. //! //!
Effects
: Inserts a each element of a range into the tree //! before the upper bound of the key of each element. //! //!
Complexity
: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //!
Throws
: Nothing. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. template
void insert_equal(Iterator b, Iterator e) { iterator end(this->end()); for (; b != e; ++b) this->insert_equal(end, *b); } //!
Requires
: value must be an lvalue //! //!
Effects
: Inserts value into the tree if the value //! is not already present. //! //!
Complexity
: Average complexity for insert element is at //! most logarithmic. //! //!
Throws
: Nothing. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair
insert_unique(reference value) { insert_commit_data commit_data; std::pair
ret = insert_unique_check(value, commit_data); if(!ret.second) return ret; return std::pair
(insert_unique_commit(value, commit_data), true); } //!
Requires
: value must be an lvalue, and "hint" must be //! a valid iterator //! //!
Effects
: Tries to insert x into the tree, using "hint" as a hint //! to where it will be inserted. //! //!
Complexity
: Logarithmic in general, but it is amortized //! constant time (two comparisons in the worst case) //! if t is inserted immediately before hint. //! //!
Throws
: Nothing. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_unique(const_iterator hint, reference value) { insert_commit_data commit_data; std::pair
ret = insert_unique_check(hint, value, commit_data); if(!ret.second) return ret.first; return insert_unique_commit(value, commit_data); } //!
Requires
: Dereferencing iterator must yield an lvalue //! of type value_type. //! //!
Effects
: Tries to insert each element of a range into the tree. //! //!
Complexity
: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //!
Throws
: Nothing. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. template
void insert_unique(Iterator b, Iterator e) { if(this->empty()){ iterator end(this->end()); for (; b != e; ++b) this->insert_unique(end, *b); } else{ for (; b != e; ++b) this->insert_unique(*b); } } std::pair
insert_unique_check (const_reference value, insert_commit_data &commit_data) { return insert_unique_check(value, priv_comp(), commit_data); } template
std::pair
insert_unique_check (const KeyType &key, KeyValueCompare key_value_comp, insert_commit_data &commit_data) { detail::key_nodeptr_comp
comp(key_value_comp, this); std::pair
ret = (node_algorithms::insert_unique_check (node_ptr(&priv_header()), key, comp, commit_data)); return std::pair
(iterator(ret.first, this), ret.second); } std::pair
insert_unique_check (const_iterator hint, const_reference value, insert_commit_data &commit_data) { return insert_unique_check(hint, value, priv_comp(), commit_data); } template
std::pair
insert_unique_check (const_iterator hint, const KeyType &key ,KeyValueCompare key_value_comp, insert_commit_data &commit_data) { detail::key_nodeptr_comp
comp(key_value_comp, this); std::pair
ret = (node_algorithms::insert_unique_check (node_ptr(&priv_header()), hint.pointed_node(), key, comp, commit_data)); return std::pair
(iterator(ret.first, this), ret.second); } iterator insert_unique_commit(reference value, const insert_commit_data &commit_data) { node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); this->priv_size_traits().increment(); std::size_t max_tree_size = (std::size_t)data_.max_tree_size_; node_algorithms::insert_unique_commit ( node_ptr(&priv_header()), to_insert, commit_data , (std::size_t)this->size(), this->get_h_alpha_func(), max_tree_size); data_.max_tree_size_ = (size_type)max_tree_size; return iterator(to_insert, this); } //!
Effects
: Erases the element pointed to by pos. //! //!
Complexity
: Average complexity for erase element is constant time. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator i) { iterator ret(i); ++ret; node_ptr to_erase(i.pointed_node()); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!node_algorithms::unique(to_erase)); std::size_t max_tree_size = data_.max_tree_size_; node_algorithms::erase ( &priv_header(), to_erase, (std::size_t)this->size() , max_tree_size, this->get_alpha_by_max_size_func()); data_.max_tree_size_ = (size_type)max_tree_size; this->priv_size_traits().decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); return ret; } //!
Effects
: Erases the range pointed to by b end e. //! //!
Complexity
: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator b, iterator e) { size_type n; return private_erase(b, e, n); } //!
Effects
: Erases all the elements with the given value. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + N). //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return this->erase(value, priv_comp()); } //!
Effects
: Erases all the elements with the given key. //! according to the comparison functor "comp". //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + N). //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase(const KeyType& key, KeyValueCompare comp) { std::pair
p = this->equal_range(key, comp); size_type n; private_erase(p.first, p.second, n); return n; } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //!
Complexity
: Average complexity for erase element is constant time. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
iterator erase_and_dispose(iterator i, Disposer disposer) { node_ptr to_erase(i.pointed_node()); iterator ret(this->erase(i)); disposer(get_real_value_traits().to_value_ptr(to_erase)); return ret; } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Complexity
: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
iterator erase_and_dispose(iterator b, iterator e, Disposer disposer) { size_type n; return private_erase(b, e, n, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + N). //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase_and_dispose(const_reference value, Disposer disposer) { std::pair
p = this->equal_range(value); size_type n; private_erase(p.first, p.second, n, disposer); return n; } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + N). //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer) { std::pair
p = this->equal_range(key, comp); size_type n; private_erase(p.first, p.second, n, disposer); return n; } //!
Effects
: Erases all of the elements. //! //!
Complexity
: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { if(safemode_or_autounlink){ this->clear_and_dispose(detail::null_disposer()); } else{ node_algorithms::init_header(&priv_header()); this->priv_size_traits().set_size(0); } } //!
Effects
: Erases all of the elements calling disposer(p) for //! each node to be erased. //!
Complexity
: Average complexity for is at most O(log(size() + N)), //! where N is the number of elements in the container. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. Calls N times to disposer functor. template
void clear_and_dispose(Disposer disposer) { node_algorithms::clear_and_dispose(node_ptr(&priv_header()) , detail::node_disposer
(disposer, this)); node_algorithms::init_header(&priv_header()); this->priv_size_traits().set_size(0); } //!
Effects
: Returns the number of contained elements with the given value //! //!
Complexity
: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given value. //! //!
Throws
: Nothing. size_type count(const_reference value) const { return this->count(value, priv_comp()); } //!
Effects
: Returns the number of contained elements with the given key //! //!
Complexity
: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //!
Throws
: Nothing. template
size_type count(const KeyType &key, KeyValueCompare comp) const { std::pair
ret = this->equal_range(key, comp); return std::distance(ret.first, ret.second); } //!
Effects
: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. iterator lower_bound(const_reference value) { return this->lower_bound(value, priv_comp()); } //!
Effects
: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. const_iterator lower_bound(const_reference value) const { return this->lower_bound(value, priv_comp()); } //!
Effects
: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. template
iterator lower_bound(const KeyType &key, KeyValueCompare comp) { detail::key_nodeptr_comp
key_node_comp(comp, this); return iterator(node_algorithms::lower_bound (const_node_ptr(&priv_header()), key, key_node_comp), this); } //!
Effects
: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. template
const_iterator lower_bound(const KeyType &key, KeyValueCompare comp) const { detail::key_nodeptr_comp
key_node_comp(comp, this); return const_iterator(node_algorithms::lower_bound (const_node_ptr(&priv_header()), key, key_node_comp), this); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. iterator upper_bound(const_reference value) { return this->upper_bound(value, priv_comp()); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k according to comp or end() if that element //! does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. template
iterator upper_bound(const KeyType &key, KeyValueCompare comp) { detail::key_nodeptr_comp
key_node_comp(comp, this); return iterator(node_algorithms::upper_bound (const_node_ptr(&priv_header()), key, key_node_comp), this); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. const_iterator upper_bound(const_reference value) const { return this->upper_bound(value, priv_comp()); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k according to comp or end() if that element //! does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. template
const_iterator upper_bound(const KeyType &key, KeyValueCompare comp) const { detail::key_nodeptr_comp
key_node_comp(comp, this); return const_iterator(node_algorithms::upper_bound (const_node_ptr(&priv_header()), key, key_node_comp), this); } //!
Effects
: Finds an iterator to the first element whose key is //! k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. iterator find(const_reference value) { return this->find(value, priv_comp()); } //!
Effects
: Finds an iterator to the first element whose key is //! k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. template
iterator find(const KeyType &key, KeyValueCompare comp) { detail::key_nodeptr_comp
key_node_comp(comp, this); return iterator (node_algorithms::find(const_node_ptr(&priv_header()), key, key_node_comp), this); } //!
Effects
: Finds a const_iterator to the first element whose key is //! k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. const_iterator find(const_reference value) const { return this->find(value, priv_comp()); } //!
Effects
: Finds a const_iterator to the first element whose key is //! k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. template
const_iterator find(const KeyType &key, KeyValueCompare comp) const { detail::key_nodeptr_comp
key_node_comp(comp, this); return const_iterator (node_algorithms::find(const_node_ptr(&priv_header()), key, key_node_comp), this); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. std::pair
equal_range(const_reference value) { return this->equal_range(value, priv_comp()); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. template
std::pair
equal_range(const KeyType &key, KeyValueCompare comp) { detail::key_nodeptr_comp
key_node_comp(comp, this); std::pair
ret (node_algorithms::equal_range(const_node_ptr(&priv_header()), key, key_node_comp)); return std::pair
(iterator(ret.first, this), iterator(ret.second, this)); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. std::pair
equal_range(const_reference value) const { return this->equal_range(value, priv_comp()); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: Nothing. template
std::pair
equal_range(const KeyType &key, KeyValueCompare comp) const { detail::key_nodeptr_comp
key_node_comp(comp, this); std::pair
ret (node_algorithms::equal_range(const_node_ptr(&priv_header()), key, key_node_comp)); return std::pair
(const_iterator(ret.first, this), const_iterator(ret.second, this)); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //!
Complexity
: Linear to erased plus inserted elements. //! //!
Throws
: If cloner throws. template
void clone_from(const sgtree_impl &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); if(!src.empty()){ node_algorithms::clone (const_node_ptr(&src.priv_header()) ,node_ptr(&this->priv_header()) ,detail::node_cloner
(cloner, this) ,detail::node_disposer
(disposer, this)); this->priv_size_traits().set_size(src.priv_size_traits().get_size()); } } //!
Effects
: Unlinks the leftmost node from the tree. //! //!
Complexity
: Average complexity is constant time. //! //!
Throws
: Nothing. //! //!
Notes
: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. pointer unlink_leftmost_without_rebalance() { node_ptr to_be_disposed(node_algorithms::unlink_leftmost_without_rebalance (node_ptr(&priv_header()))); if(!to_be_disposed) return 0; this->priv_size_traits().decrement(); if(safemode_or_autounlink)//If this is commented does not work with normal_link node_algorithms::init(to_be_disposed); return get_real_value_traits().to_value_ptr(to_be_disposed); } //!
Requires
: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any tree. //! //!
Effects
: Replaces replace_this in its position in the //! tree with with_this. The tree does not need to be rebalanced. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this) { node_algorithms::replace_node( get_real_value_traits().to_node_ptr(*replace_this) , node_ptr(&priv_header()) , get_real_value_traits().to_node_ptr(with_this)); } //!
Requires
: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator i belonging to the set //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static iterator s_iterator_to(reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); return iterator (value_traits::to_node_ptr(value), 0); } //!
Requires
: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static const_iterator s_iterator_to(const_reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); return const_iterator (value_traits::to_node_ptr(const_cast
(value)), 0); } //!
Requires
: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator i belonging to the set //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator iterator_to(reference value) { return iterator (value_traits::to_node_ptr(value), this); } //!
Requires
: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator iterator_to(const_reference value) const { return const_iterator (value_traits::to_node_ptr(const_cast
(value)), this); } //!
Requires
: value shall not be in a tree. //! //!
Effects
: init_node puts the hook of a value in a well-known default //! state. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant time. //! //!
Note
: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value) { node_algorithms::init(value_traits::to_node_ptr(value)); } //!
Effects
: Rebalances the tree. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear. void rebalance() { node_algorithms::rebalance(node_ptr(&priv_header())); } //!
Requires
: old_root is a node of a tree. //! //!
Effects
: Rebalances the subtree rooted at old_root. //! //!
Returns
: The new root of the subtree. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements in the subtree. iterator rebalance_subtree(iterator root) { return iterator(node_algorithms::rebalance_subtree(root.pointed_node()), this); } //!
Returns
: The balance factor (alpha) used in this tree //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. float balance_factor() const { return this->priv_alpha(); } //!
Requires
: new_alpha must be a value between 0.5 and 1.0 //! //!
Effects
: Establishes a new balance factor (alpha) and rebalances //! the tree if the new balance factor is stricter (less) than the old factor. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements in the subtree. void balance_factor(float new_alpha) { BOOST_INTRUSIVE_INVARIANT_ASSERT((new_alpha > 0.5f && new_alpha < 1.0f)); if(new_alpha < 0.5f && new_alpha >= 1.0f) return; //The alpha factor CAN't be changed if the fixed, floating operation-less //1/sqrt(2) alpha factor option is activated BOOST_STATIC_ASSERT((floating_point)); float old_alpha = this->priv_alpha(); this->priv_alpha(new_alpha); if(new_alpha < old_alpha){ data_.max_tree_size_ = this->size(); this->rebalance(); } } /* //!
Effects
: removes x from a tree of the appropriate type. It has no effect, //! if x is not in such a tree. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant time. //! //!
Note
: This static function is only usable with the "safe mode" //! hook and non-constant time size lists. Otherwise, the user must use //! the non-static "erase(reference )" member. If the user calls //! this function with a non "safe mode" or constant time size list //! a compilation error will be issued. template
static void remove_node(T& value) { //This function is only usable for safe mode hooks and non-constant //time lists. //BOOST_STATIC_ASSERT((!(safemode_or_autounlink && constant_time_size))); BOOST_STATIC_ASSERT((!constant_time_size)); BOOST_STATIC_ASSERT((boost::is_convertible
::value)); node_ptr to_remove(value_traits::to_node_ptr(value)); node_algorithms::unlink_and_rebalance(to_remove); if(safemode_or_autounlink) node_algorithms::init(to_remove); } */ /// @cond private: template
iterator private_erase(iterator b, iterator e, size_type &n, Disposer disposer) { for(n = 0; b != e; ++n) this->erase_and_dispose(b++, disposer); return b; } iterator private_erase(iterator b, iterator e, size_type &n) { for(n = 0; b != e; ++n) this->erase(b++); return b; } /// @endcond private: static sgtree_impl &priv_container_from_end_iterator(const const_iterator &end_iterator) { header_plus_alpha *r = detail::parent_from_member
( detail::get_pointer(end_iterator.pointed_node()), &header_plus_alpha::header_); node_plus_pred_t *n = detail::parent_from_member
(r, &node_plus_pred_t::header_plus_alpha_); data_t *d = detail::parent_from_member
(n, &data_t::node_plus_pred_); sgtree_impl *scapegoat = detail::parent_from_member
(d, &sgtree_impl::data_); return *scapegoat; } }; #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator< #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sgtree_impl
&x, const sgtree_impl
&y) #else (const sgtree_impl
&x, const sgtree_impl
&y) #endif { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif bool operator== #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sgtree_impl
&x, const sgtree_impl
&y) #else (const sgtree_impl
&x, const sgtree_impl
&y) #endif { typedef sgtree_impl
tree_type; typedef typename tree_type::const_iterator const_iterator; if(tree_type::constant_time_size && x.size() != y.size()){ return false; } const_iterator end1 = x.end(); const_iterator i1 = x.begin(); const_iterator i2 = y.begin(); if(tree_type::constant_time_size){ while (i1 != end1 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1; } else{ const_iterator end2 = y.end(); while (i1 != end1 && i2 != end2 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1 && i2 == end2; } } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator!= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sgtree_impl
&x, const sgtree_impl
&y) #else (const sgtree_impl
&x, const sgtree_impl
&y) #endif { return !(x == y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator> #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sgtree_impl
&x, const sgtree_impl
&y) #else (const sgtree_impl
&x, const sgtree_impl
&y) #endif { return y < x; } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator<= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sgtree_impl
&x, const sgtree_impl
&y) #else (const sgtree_impl
&x, const sgtree_impl
&y) #endif { return !(y < x); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator>= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sgtree_impl
&x, const sgtree_impl
&y) #else (const sgtree_impl
&x, const sgtree_impl
&y) #endif { return !(x < y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline void swap #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (sgtree_impl
&x, sgtree_impl
&y) #else (sgtree_impl
&x, sgtree_impl
&y) #endif { x.swap(y); } /// @cond template
struct make_sgtree_opt { typedef typename pack_options < sg_set_defaults
, O1, O2, O3, O4>::type packed_options; typedef typename detail::get_value_traits
::type value_traits; typedef sg_setopt < value_traits , typename packed_options::compare , typename packed_options::size_type , packed_options::floating_point > type; }; /// @endcond //! Helper metafunction to define a \c sgtree that yields to the same type when the //! same options (either explicitly or implicitly) are used. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif struct make_sgtree { /// @cond typedef sgtree_impl < typename make_sgtree_opt
::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
class sgtree : public make_sgtree
::type { typedef typename make_sgtree
::type Base; public: typedef typename Base::value_compare value_compare; typedef typename Base::value_traits value_traits; typedef typename Base::real_value_traits real_value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same
::value)); sgtree( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, v_traits) {} template
sgtree( bool unique, Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(unique, b, e, cmp, v_traits) {} static sgtree &container_from_end_iterator(iterator end_iterator) { return static_cast
(Base::container_from_end_iterator(end_iterator)); } static const sgtree &container_from_end_iterator(const_iterator end_iterator) { return static_cast
(Base::container_from_end_iterator(end_iterator)); } }; #endif } //namespace intrusive } //namespace boost #include
#endif //BOOST_INTRUSIVE_SGTREE_HPP
sgtree.hpp
网页地址
文件地址
上一页
24/34
下一页
下载
( 59 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.