x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
legendre.hpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\math\special_functions\legendre.hpp
旋转
特效
属性
历史版本
// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SPECIAL_LEGENDRE_HPP #define BOOST_MATH_SPECIAL_LEGENDRE_HPP #include
#include
#include
namespace boost{ namespace math{ // Recurrance relation for legendre P and Q polynomials: template
inline typename tools::promote_args
::type legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1) { typedef typename tools::promote_args
::type result_type; return ((2 * l + 1) * result_type(x) * result_type(Pl) - l * result_type(Plm1)) / (l + 1); } namespace detail{ // Implement Legendre P and Q polynomials via recurrance: template
T legendre_imp(unsigned l, T x, const Policy& pol, bool second = false) { static const char* function = "boost::math::legrendre_p<%1%>(unsigned, %1%)"; // Error handling: if((x < -1) || (x > 1)) return policies::raise_domain_error
( function, "The Legendre Polynomial is defined for" " -1 <= x <= 1, but got x = %1%.", x, pol); T p0, p1; if(second) { // A solution of the second kind (Q): p0 = (boost::math::log1p(x, pol) - boost::math::log1p(-x, pol)) / 2; p1 = x * p0 - 1; } else { // A solution of the first kind (P): p0 = 1; p1 = x; } if(l == 0) return p0; unsigned n = 1; while(n < l) { std::swap(p0, p1); p1 = boost::math::legendre_next(n, x, p0, p1); ++n; } return p1; } } // namespace detail template
inline typename tools::promote_args
::type legendre_p(int l, T x, const Policy& pol) { typedef typename tools::promote_args
::type result_type; typedef typename policies::evaluation
::type value_type; static const char* function = "boost::math::legendre_p<%1%>(unsigned, %1%)"; if(l < 0) return policies::checked_narrowing_cast
(detail::legendre_imp(-l-1, static_cast
(x), pol, false), function); return policies::checked_narrowing_cast
(detail::legendre_imp(l, static_cast
(x), pol, false), function); } template
inline typename tools::promote_args
::type legendre_p(int l, T x) { return boost::math::legendre_p(l, x, policies::policy<>()); } template
inline typename tools::promote_args
::type legendre_q(unsigned l, T x, const Policy& pol) { typedef typename tools::promote_args
::type result_type; typedef typename policies::evaluation
::type value_type; return policies::checked_narrowing_cast
(detail::legendre_imp(l, static_cast
(x), pol, true), "boost::math::legendre_q<%1%>(unsigned, %1%)"); } template
inline typename tools::promote_args
::type legendre_q(unsigned l, T x) { return boost::math::legendre_q(l, x, policies::policy<>()); } // Recurrence for associated polynomials: template
inline typename tools::promote_args
::type legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1) { typedef typename tools::promote_args
::type result_type; return ((2 * l + 1) * result_type(x) * result_type(Pl) - (l + m) * result_type(Plm1)) / (l + 1 - m); } namespace detail{ // Legendre P associated polynomial: template
T legendre_p_imp(int l, int m, T x, T sin_theta_power, const Policy& pol) { // Error handling: if((x < -1) || (x > 1)) return policies::raise_domain_error
( "boost::math::legendre_p<%1%>(int, int, %1%)", "The associated Legendre Polynomial is defined for" " -1 <= x <= 1, but got x = %1%.", x, pol); // Handle negative arguments first: if(l < 0) return legendre_p_imp(-l-1, m, x, sin_theta_power, pol); if(m < 0) { int sign = (m&1) ? -1 : 1; return sign * boost::math::tgamma_ratio(static_cast
(l+m+1), static_cast
(l+1-m), pol) * legendre_p_imp(l, -m, x, sin_theta_power, pol); } // Special cases: if(m > l) return 0; if(m == 0) return boost::math::legendre_p(l, x, pol); T p0 = boost::math::double_factorial
(2 * m - 1, pol) * sin_theta_power; if(m&1) p0 *= -1; if(m == l) return p0; T p1 = x * (2 * m + 1) * p0; int n = m + 1; while(n < l) { std::swap(p0, p1); p1 = boost::math::legendre_next(n, m, x, p0, p1); ++n; } return p1; } template
inline T legendre_p_imp(int l, int m, T x, const Policy& pol) { BOOST_MATH_STD_USING // TODO: we really could use that mythical "pow1p" function here: return legendre_p_imp(l, m, x, pow(1 - x*x, T(abs(m))/2), pol); } } template
inline typename tools::promote_args
::type legendre_p(int l, int m, T x, const Policy& pol) { typedef typename tools::promote_args
::type result_type; typedef typename policies::evaluation
::type value_type; return policies::checked_narrowing_cast
(detail::legendre_p_imp(l, m, static_cast
(x), pol), "bost::math::legendre_p<%1%>(int, int, %1%)"); } template
inline typename tools::promote_args
::type legendre_p(int l, int m, T x) { return boost::math::legendre_p(l, m, x, policies::policy<>()); } } // namespace math } // namespace boost #endif // BOOST_MATH_SPECIAL_LEGENDRE_HPP
legendre.hpp
网页地址
文件地址
上一页
26/35
下一页
下载
( 5 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.