x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
variant.hpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\gil\extension\dynamic_image\variant.hpp
旋转
特效
属性
历史版本
/* Copyright 2005-2007 Adobe Systems Incorporated Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). See http://opensource.adobe.com/gil for most recent version including documentation. */ /*************************************************************************************************/ #ifndef GIL_DYNAMICIMAGE_VARIANT_HPP #define GIL_DYNAMICIMAGE_VARIANT_HPP //////////////////////////////////////////////////////////////////////////////////////// /// \file /// \brief Support for run-time instantiated types /// \author Lubomir Bourdev and Hailin Jin \n /// Adobe Systems Incorporated /// \date 2005-2007 \n Last updated on September 18, 2007 /// //////////////////////////////////////////////////////////////////////////////////////// #include "../../gil_config.hpp" #include "../../utilities.hpp" #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace boost { namespace gil { namespace detail { template
struct type_to_index; template
struct reduce; struct destructor_op { typedef void result_type; template
result_type operator()(const T& t) const { t.~T(); } }; template
void copy_construct_in_place(const T& t, Bits& bits); template
struct copy_construct_in_place_fn; } /** \brief Represents a concrete instance of a run-time specified type from a set of types \class variant \ingroup Variant A concept is typically modeled by a collection of different types. They may be instantiations of a templated type with different template parameters or even completely unrelated types. We call the type with which the concept is instantiated in a given place in the code "the concrete type". The concrete type must be chosen at compile time, which sometimes is a severe limitation. Consider, for example, having an image concept modeled by an image class templated over the color space. It would be difficult to write a function that reads an image from file preserving its native color space, since the type of the return value is only available at run time. It would be difficult to store images of different color spaces in the same container or apply operations on them uniformly. The variant class addresses this deficiency. It allows for run-time instantiation of a class from a given set of allowed classes specified at compile time. For example, the set of allowed classes may include 8-bit and 16-bit RGB and CMYK images. Such a variant can be constructed with rgb8_image_t and then assigned a cmyk16_image_t. The variant has a templated constructor, which allows us to construct it with any concrete type instantiation. It can also perform a generic operation on the concrete type via a call to apply_operation. The operation must be provided as a function object whose application operator has a single parameter which can be instantiated with any of the allowed types of the variant. variant breaks down the instantiated type into a non-templated underlying base type and a unique instantiation type identifier. In the most common implementation the concrete instantiation in stored 'in-place' - in 'bits_t'. bits_t contains sufficient space to fit the largest of the instantiated objects. GIL's variant is similar to boost::variant in spirit (hence we borrow the name from there) but it differs in several ways from the current boost implementation. Most notably, it does not take a variable number of template parameters but a single parameter defining the type enumeration. As such it can be used more effectively in generic code. The Types parameter specifies the set of allowable types. It models MPL Random Access Container */ template
// models MPL Random Access Container class variant { // size in bytes of the largest type in Types static const std::size_t MAX_SIZE = mpl::fold
, mpl::max
> >::type::value; static const std::size_t NUM_TYPES = mpl::size
::value; public: typedef Types types_t; typedef struct { char data[MAX_SIZE]; } base_t; // empty space equal to the size of the largest type in Types // Default constructor - default construct the first type variant() : _index(0) { new(&_bits) typename mpl::at_c
::type(); } virtual ~variant() { apply_operation(*this, detail::destructor_op()); } // Throws std::bad_cast if T is not in Types template
explicit variant(const T& obj){ _index=type_id
(); if (_index==NUM_TYPES) throw std::bad_cast(); detail::copy_construct_in_place(obj, _bits); } // When doSwap is true, swaps obj with the contents of the variant. obj will contain default-constructed instance after the call template
explicit variant(T& obj, bool do_swap); template
variant& operator=(const T& obj) { variant tmp(obj); swap(*this,tmp); return *this; } variant& operator=(const variant& v) { variant tmp(v ); swap(*this,tmp); return *this; } variant(const variant& v) : _index(v._index) { apply_operation(v, detail::copy_construct_in_place_fn
(_bits)); } template
void move_in(T& obj) { variant tmp(obj, true); swap(*this,tmp); } template
friend bool operator==(const variant
& x, const variant
& y); template
friend bool operator!=(const variant
& x, const variant
& y); template
static bool has_type() { return type_id
()!=NUM_TYPES; } template
const T& _dynamic_cast() const { if (!current_type_is
()) throw std::bad_cast(); return *gil_reinterpret_cast_c
(&_bits); } template
T& _dynamic_cast() { if (!current_type_is
()) throw std::bad_cast(); return *gil_reinterpret_cast < T*>(&_bits); } template
bool current_type_is() const { return type_id
()==_index; } private: template
static std::size_t type_id() { return detail::type_to_index
::value; } template
friend void swap(variant
& x, variant
& y); template
friend typename UnaryOp::result_type apply_operation(variant
& var, UnaryOp op); template
friend typename UnaryOp::result_type apply_operation(const variant
& var, UnaryOp op); template
friend typename BinaryOp::result_type apply_operation(const variant
& arg1, const variant
& arg2, BinaryOp op); base_t _bits; std::size_t _index; }; namespace detail { template
void copy_construct_in_place(const T& t, Bits& bits) { T& b=*gil_reinterpret_cast
(&bits); new(&b)T(t); // default-construct } template
struct copy_construct_in_place_fn { typedef void result_type; Bits& _dst; copy_construct_in_place_fn(Bits& dst) : _dst(dst) {} template
void operator()(const T& src) const { copy_construct_in_place(src,_dst); } }; template
struct equal_to_fn { const Bits& _dst; equal_to_fn(const Bits& dst) : _dst(dst) {} typedef bool result_type; template
result_type operator()(const T& x) const { return x==*gil_reinterpret_cast_c
(&_dst); } }; } // When doSwap is true, swaps obj with the contents of the variant. obj will contain default-constructed instance after the call template
template
variant
::variant(T& obj, bool do_swap) { _index=type_id
(); if (_index==NUM_TYPES) throw std::bad_cast(); if (do_swap) { new(&_bits) T(); // default construct swap(obj, *gil_reinterpret_cast
(&_bits)); } else detail::copy_construct_in_place(const_cast
(obj), _bits); } template
void swap(variant
& x, variant
& y) { std::swap(x._bits,y._bits); std::swap(x._index, y._index); } template
inline bool operator==(const variant
& x, const variant
& y) { return x._index==y._index && apply_operation(x,detail::equal_to_fn
::base_t>(y._bits)); } template
inline bool operator!=(const variant
& x, const variant
& y) { return !(x==y); } } } // namespace boost::gil #endif
variant.hpp
网页地址
文件地址
上一页
10/10 下一页
下载
( 9 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.