x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
t_distribution_inv.hpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\math\special_functions\detail\t_distribution_inv.hpp
旋转
特效
属性
历史版本
// Copyright John Maddock 2007. // Copyright Paul A. Bristow 2007 // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SF_DETAIL_INV_T_HPP #define BOOST_MATH_SF_DETAIL_INV_T_HPP #include
namespace boost{ namespace math{ namespace detail{ // // The main method used is due to Hill: // // G. W. Hill, Algorithm 396, Student�s t-Quantiles, // Communications of the ACM, 13(10): 619-620, Oct., 1970. // template
T inverse_students_t_hill(T ndf, T u, const Policy& pol) { BOOST_MATH_STD_USING BOOST_ASSERT(u <= 0.5); T a, b, c, d, q, x, y; if (ndf > 1e20f) return -boost::math::erfc_inv(2 * u, pol) * constants::root_two
(); a = 1 / (ndf - 0.5f); b = 48 / (a * a); c = ((20700 * a / b - 98) * a - 16) * a + 96.36f; d = ((94.5f / (b + c) - 3) / b + 1) * sqrt(a * constants::pi
() / 2) * ndf; y = pow(d * 2 * u, 2 / ndf); if (y > (0.05f + a)) { // // Asymptotic inverse expansion about normal: // x = -boost::math::erfc_inv(2 * u, pol) * constants::root_two
(); y = x * x; if (ndf < 5) c += 0.3f * (ndf - 4.5f) * (x + 0.6f); c += (((0.05f * d * x - 5) * x - 7) * x - 2) * x + b; y = (((((0.4f * y + 6.3f) * y + 36) * y + 94.5f) / c - y - 3) / b + 1) * x; y = boost::math::expm1(a * y * y, pol); } else { y = ((1 / (((ndf + 6) / (ndf * y) - 0.089f * d - 0.822f) * (ndf + 2) * 3) + 0.5 / (ndf + 4)) * y - 1) * (ndf + 1) / (ndf + 2) + 1 / y; } q = sqrt(ndf * y); return -q; } // // Tail and body series are due to Shaw: // // www.mth.kcl.ac.uk/�shaww/web_page/papers/Tdistribution06.pdf // // Shaw, W.T., 2006, "Sampling Student�s T distribution � use of // the inverse cumulative distribution function." // Journal of Computational Finance, Vol 9 Issue 4, pp 37-73, Summer 2006 // template
T inverse_students_t_tail_series(T df, T v, const Policy& pol) { BOOST_MATH_STD_USING // Tail series expansion, see section 6 of Shaw's paper. // w is calculated using Eq 60: T w = boost::math::tgamma_delta_ratio(df / 2, constants::half
(), pol) * sqrt(df * constants::pi
()) * v; // define some variables: T np2 = df + 2; T np4 = df + 4; T np6 = df + 6; // // Calculate the coefficients d(k), these depend only on the // number of degrees of freedom df, so at least in theory // we could tabulate these for fixed df, see p15 of Shaw: // T d[7] = { 1, }; d[1] = -(df + 1) / (2 * np2); np2 *= (df + 2); d[2] = -df * (df + 1) * (df + 3) / (8 * np2 * np4); np2 *= df + 2; d[3] = -df * (df + 1) * (df + 5) * (((3 * df) + 7) * df -2) / (48 * np2 * np4 * np6); np2 *= (df + 2); np4 *= (df + 4); d[4] = -df * (df + 1) * (df + 7) * ( (((((15 * df) + 154) * df + 465) * df + 286) * df - 336) * df + 64 ) / (384 * np2 * np4 * np6 * (df + 8)); np2 *= (df + 2); d[5] = -df * (df + 1) * (df + 3) * (df + 9) * (((((((35 * df + 452) * df + 1573) * df + 600) * df - 2020) * df) + 928) * df -128) / (1280 * np2 * np4 * np6 * (df + 8) * (df + 10)); np2 *= (df + 2); np4 *= (df + 4); np6 *= (df + 6); d[6] = -df * (df + 1) * (df + 11) * ((((((((((((945 * df) + 31506) * df + 425858) * df + 2980236) * df + 11266745) * df + 20675018) * df + 7747124) * df - 22574632) * df - 8565600) * df + 18108416) * df - 7099392) * df + 884736) / (46080 * np2 * np4 * np6 * (df + 8) * (df + 10) * (df +12)); // // Now bring everthing together to provide the result, // this is Eq 62 of Shaw: // T rn = sqrt(df); T div = pow(rn * w, 1 / df); T power = div * div; T result = tools::evaluate_polynomial(d, power); result *= rn; result /= div; return -result; } template
T inverse_students_t_body_series(T df, T u, const Policy& pol) { BOOST_MATH_STD_USING // // Body series for small N: // // Start with Eq 56 of Shaw: // T v = boost::math::tgamma_delta_ratio(df / 2, constants::half
(), pol) * sqrt(df * constants::pi
()) * (u - constants::half
()); // // Workspace for the polynomial coefficients: // T c[11] = { 0, 1, }; // // Figure out what the coefficients are, note these depend // only on the degrees of freedom (Eq 57 of Shaw): // c[2] = T(1) / 6 + T(1) / (6 * df); T in = 1 / df; c[3] = (((T(1) / 120) * in) + (T(1) / 15)) * in + (T(7) / 120); c[4] = ((((T(1) / 5040) * in + (T(1) / 560)) * in + (T(3) / 112)) * in + T(127) / 5040); c[5] = ((((T(1) / 362880) * in + (T(17) / 45360)) * in + (T(67) / 60480)) * in + (T(479) / 45360)) * in + (T(4369) / 362880); c[6] = ((((((T(1) / 39916800) * in + (T(2503) / 39916800)) * in + (T(11867) / 19958400)) * in + (T(1285) / 798336)) * in + (T(153161) / 39916800)) * in + (T(34807) / 5702400)); c[7] = (((((((T(1) / 6227020800LL) * in + (T(37) / 2402400)) * in + (T(339929) / 2075673600LL)) * in + (T(67217) / 97297200)) * in + (T(870341) / 691891200LL)) * in + (T(70691) / 64864800LL)) * in + (T(20036983LL) / 6227020800LL)); c[8] = (((((((T(1) / 1307674368000LL) * in + (T(1042243LL) / 261534873600LL)) * in + (T(21470159) / 435891456000LL)) * in + (T(326228899LL) / 1307674368000LL)) * in + (T(843620579) / 1307674368000LL)) * in + (T(332346031LL) / 435891456000LL)) * in + (T(43847599) / 1307674368000LL)) * in + (T(2280356863LL) / 1307674368000LL); c[9] = (((((((((T(1) / 355687428096000LL)) * in + (T(24262727LL) / 22230464256000LL)) * in + (T(123706507LL) / 8083805184000LL)) * in + (T(404003599LL) / 4446092851200LL)) * in + (T(51811946317LL) / 177843714048000LL)) * in + (T(91423417LL) / 177843714048LL)) * in + (T(32285445833LL) / 88921857024000LL)) * in + (T(531839683LL) / 1710035712000LL)) * in + (T(49020204823LL) / 50812489728000LL); c[10] = (((((((((T(1) / 121645100408832000LL) * in + (T(4222378423LL) / 13516122267648000LL)) * in + (T(49573465457LL) / 10137091700736000LL)) * in + (T(176126809LL) / 5304600576000LL)) * in + (T(44978231873LL) / 355687428096000LL)) * in + (T(5816850595639LL) / 20274183401472000LL)) * in + (T(73989712601LL) / 206879422464000LL)) * in + (T(26591354017LL) / 259925428224000LL)) * in + (T(14979648446341LL) / 40548366802944000LL)) * in + (T(65967241200001LL) / 121645100408832000LL); // // The result is then a polynomial in v (see Eq 56 of Shaw): // return tools::evaluate_odd_polynomial(c, v); } template
T inverse_students_t(T df, T u, T v, const Policy& pol, bool* pexact = 0) { // // df = number of degrees of freedom. // u = probablity. // v = 1 - u. // l = lanczos type to use. // BOOST_MATH_STD_USING bool invert = false; T result = 0; if(pexact) *pexact = false; if(u > v) { // function is symmetric, invert it: std::swap(u, v); invert = true; } if((floor(df) == df) && (df < 20)) { // // we have integer degrees of freedom, try for the special // cases first: // T tolerance = ldexp(1.0f, (2 * policies::digits
()) / 3); switch(boost::math::tools::real_cast
(df)) { case 1: { // // df = 1 is the same as the Cauchy distribution, see // Shaw Eq 35: // if(u == 0.5) result = 0; else result = -cos(constants::pi
() * u) / sin(constants::pi
() * u); if(pexact) *pexact = true; break; } case 2: { // // df = 2 has an exact result, see Shaw Eq 36: // result =(2 * u - 1) / sqrt(2 * u * v); if(pexact) *pexact = true; break; } case 4: { // // df = 4 has an exact result, see Shaw Eq 38 & 39: // T alpha = 4 * u * v; T root_alpha = sqrt(alpha); T r = 4 * cos(acos(root_alpha) / 3) / root_alpha; T x = sqrt(r - 4); result = u - 0.5f < 0 ? -x : x; if(pexact) *pexact = true; break; } case 6: { // // We get numeric overflow in this area: // if(u < 1e-150) return (invert ? -1 : 1) * inverse_students_t_hill(df, u, pol); // // Newton-Raphson iteration of a polynomial case, // choice of seed value is taken from Shaw's online // supplement: // T a = 4 * (u - u * u);//1 - 4 * (u - 0.5f) * (u - 0.5f); T b = boost::math::cbrt(a); static const T c = 0.85498797333834849467655443627193L; T p = 6 * (1 + c * (1 / b - 1)); T p0; do{ T p2 = p * p; T p4 = p2 * p2; T p5 = p * p4; p0 = p; // next term is given by Eq 41: p = 2 * (8 * a * p5 - 270 * p2 + 2187) / (5 * (4 * a * p4 - 216 * p - 243)); }while(fabs((p - p0) / p) > tolerance); // // Use Eq 45 to extract the result: // p = sqrt(p - df); result = (u - 0.5f) < 0 ? -p : p; break; } #if 0 // // These are Shaw's "exact" but iterative solutions // for even df, the numerical accuracy of these is // rather less than Hill's method, so these are disabled // for now, which is a shame because they are reasonably // quick to evaluate... // case 8: { // // Newton-Raphson iteration of a polynomial case, // choice of seed value is taken from Shaw's online // supplement: // static const T c8 = 0.85994765706259820318168359251872L; T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f); T b = pow(a, T(1) / 4); T p = 8 * (1 + c8 * (1 / b - 1)); T p0 = p; do{ T p5 = p * p; p5 *= p5 * p; p0 = p; // Next term is given by Eq 42: p = 2 * (3 * p + (640 * (160 + p * (24 + p * (p + 4)))) / (-5120 + p * (-2048 - 960 * p + a * p5))) / 7; }while(fabs((p - p0) / p) > tolerance); // // Use Eq 45 to extract the result: // p = sqrt(p - df); result = (u - 0.5f) < 0 ? -p : p; break; } case 10: { // // Newton-Raphson iteration of a polynomial case, // choice of seed value is taken from Shaw's online // supplement: // static const T c10 = 0.86781292867813396759105692122285L; T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f); T b = pow(a, T(1) / 5); T p = 10 * (1 + c10 * (1 / b - 1)); T p0; do{ T p6 = p * p; p6 *= p6 * p6; p0 = p; // Next term given by Eq 43: p = (8 * p) / 9 + (218750 * (21875 + 4 * p * (625 + p * (75 + 2 * p * (5 + p))))) / (9 * (-68359375 + 8 * p * (-2343750 + p * (-546875 - 175000 * p + 8 * a * p6)))); }while(fabs((p - p0) / p) > tolerance); // // Use Eq 45 to extract the result: // p = sqrt(p - df); result = (u - 0.5f) < 0 ? -p : p; break; } #endif default: goto calculate_real; } } else { calculate_real: if(df < 3) { // // Use a roughly linear scheme to choose between Shaw's // tail series and body series: // T crossover = 0.2742f - df * 0.0242143f; if(u > crossover) { result = boost::math::detail::inverse_students_t_body_series(df, u, pol); } else { result = boost::math::detail::inverse_students_t_tail_series(df, u, pol); } } else { // // Use Hill's method except in the exteme tails // where we use Shaw's tail series. // The crossover point is roughly exponential in -df: // T crossover = ldexp(1.0f, tools::real_cast
(df / -0.654f)); if(u > crossover) { result = boost::math::detail::inverse_students_t_hill(df, u, pol); } else { result = boost::math::detail::inverse_students_t_tail_series(df, u, pol); } } } return invert ? -result : result; } template
inline T find_ibeta_inv_from_t_dist(T a, T p, T q, T* py, const Policy& pol) { T u = (p > q) ? 0.5f - q / 2 : p / 2; T v = 1 - u; // u < 0.5 so no cancellation error T df = a * 2; T t = boost::math::detail::inverse_students_t(df, u, v, pol); T x = df / (df + t * t); *py = t * t / (df + t * t); return x; } template
inline T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const mpl::false_*) { BOOST_MATH_STD_USING // // Need to use inverse incomplete beta to get // required precision so not so fast: // T probability = (p > 0.5) ? 1 - p : p; T t, x, y; x = ibeta_inv(df / 2, T(0.5), 2 * probability, &y, pol); if(df * y > tools::max_value
() * x) t = policies::raise_overflow_error
("boost::math::students_t_quantile<%1%>(%1%,%1%)", 0, pol); else t = sqrt(df * y / x); // // Figure out sign based on the size of p: // if(p < 0.5) t = -t; return t; } template
T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const mpl::true_*) { BOOST_MATH_STD_USING bool invert = false; if((df < 2) && (floor(df) != df)) return boost::math::detail::fast_students_t_quantile_imp(df, p, pol, static_cast
(0)); if(p > 0.5) { p = 1 - p; invert = true; } // // Get an estimate of the result: // bool exact; T t = inverse_students_t(df, p, 1-p, pol, &exact); if((t == 0) || exact) return invert ? -t : t; // can't do better! // // Change variables to inverse incomplete beta: // T t2 = t * t; T xb = df / (df + t2); T y = t2 / (df + t2); T a = df / 2; // // t can be so large that x underflows, // just return our estimate in that case: // if(xb == 0) return t; // // Get incomplete beta and it's derivative: // T f1; T f0 = xb < y ? ibeta_imp(a, constants::half
(), xb, pol, false, true, &f1) : ibeta_imp(constants::half
(), a, y, pol, true, true, &f1); // Get cdf from incomplete beta result: T p0 = f0 / 2 - p; // Get pdf from derivative: T p1 = f1 * sqrt(y * xb * xb * xb / df); // // Second derivative divided by p1: // // yacas gives: // // In> PrettyForm(Simplify(D(t) (1 + t^2/v) ^ (-(v+1)/2))) // // | | v + 1 | | // | -| ----- + 1 | | // | | 2 | | // -| | 2 | | // | | t | | // | | -- + 1 | | // | ( v + 1 ) * | v | * t | // --------------------------------------------- // v // // Which after some manipulation is: // // -p1 * t * (df + 1) / (t^2 + df) // T p2 = t * (df + 1) / (t * t + df); // Halley step: t = fabs(t); t += p0 / (p1 + p0 * p2 / 2); return !invert ? -t : t; } template
inline T fast_students_t_quantile(T df, T p, const Policy& pol) { typedef typename policies::evaluation
::type value_type; typedef typename policies::normalise< Policy, policies::promote_float
, policies::promote_double
, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; typedef mpl::bool_< (std::numeric_limits
::digits <= 53) && (std::numeric_limits
::is_specialized)> tag_type; return policies::checked_narrowing_cast
(fast_students_t_quantile_imp(static_cast
(df), static_cast
(p), pol, static_cast
(0)), "boost::math::students_t_quantile<%1%>(%1%,%1%,%1%)"); } }}} // namespaces #endif // BOOST_MATH_SF_DETAIL_INV_T_HPP
t_distribution_inv.hpp
网页地址
文件地址
上一页
23/24
下一页
下载
( 17 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.