x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
concepts.hpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\numeric\ublas\detail\concepts.hpp
旋转
特效
属性
历史版本
// // Copyright (c) 2000-2002 // Joerg Walter, Mathias Koch // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_CONCEPTS_ #define _BOOST_UBLAS_CONCEPTS_ #include
// Concept checks based on ideas of Jeremy Siek namespace boost { namespace numeric { namespace ublas { template
struct Indexed1DIteratorConcept { typedef I iterator_type; void constraints () { iterator_type it = iterator_type (); // Index it.index (); } }; template
struct IndexedBidirectional1DIteratorConcept { typedef I iterator_type; void constraints () { function_requires< BidirectionalIteratorConcept
>(); function_requires< Indexed1DIteratorConcept
>(); } }; template
struct Mutable_IndexedBidirectional1DIteratorConcept { typedef I iterator_type; void constraints () { function_requires< Mutable_BidirectionalIteratorConcept
>(); function_requires< Indexed1DIteratorConcept
>(); } }; template
struct IndexedRandomAccess1DIteratorConcept { typedef I iterator_type; void constraints () { function_requires< RandomAccessIteratorConcept
>(); function_requires< Indexed1DIteratorConcept
>(); } }; template
struct Mutable_IndexedRandomAccess1DIteratorConcept { typedef I iterator_type; void constraints () { function_requires< Mutable_RandomAccessIteratorConcept
>(); function_requires< Indexed1DIteratorConcept
>(); } }; template
struct Indexed2DIteratorConcept { typedef I iterator_type; typedef typename I::dual_iterator_type dual_iterator_type; typedef typename I::dual_reverse_iterator_type dual_reverse_iterator_type; void constraints () { iterator_type it = iterator_type (); // Indices it.index1 (); it.index2 (); // Iterator begin/end dual_iterator_type it_begin (it.begin ()); dual_iterator_type it_end (it.end ()); // Reverse iterator begin/end dual_reverse_iterator_type it_rbegin (it.rbegin ()); dual_reverse_iterator_type it_rend (it.rend ()); ignore_unused_variable_warning (it_begin); ignore_unused_variable_warning (it_end); ignore_unused_variable_warning (it_rbegin); ignore_unused_variable_warning (it_rend); } }; template
struct IndexedBidirectional2DIteratorConcept { typedef I1 subiterator1_type; typedef I2 subiterator2_type; void constraints () { function_requires< BidirectionalIteratorConcept
>(); function_requires< BidirectionalIteratorConcept
>(); function_requires< Indexed2DIteratorConcept
>(); function_requires< Indexed2DIteratorConcept
>(); } }; template
struct Mutable_IndexedBidirectional2DIteratorConcept { typedef I1 subiterator1_type; typedef I2 subiterator2_type; void constraints () { function_requires< Mutable_BidirectionalIteratorConcept
>(); function_requires< Mutable_BidirectionalIteratorConcept
>(); function_requires< Indexed2DIteratorConcept
>(); function_requires< Indexed2DIteratorConcept
>(); } }; template
struct IndexedRandomAccess2DIteratorConcept { typedef I1 subiterator1_type; typedef I2 subiterator2_type; void constraints () { function_requires< RandomAccessIteratorConcept
>(); function_requires< RandomAccessIteratorConcept
>(); function_requires< Indexed2DIteratorConcept
>(); function_requires< Indexed2DIteratorConcept
>(); } }; template
struct Mutable_IndexedRandomAccess2DIteratorConcept { typedef I1 subiterator1_type; typedef I2 subiterator2_type; void constraints () { function_requires< Mutable_RandomAccessIteratorConcept
>(); function_requires< Mutable_RandomAccessIteratorConcept
>(); function_requires< Indexed2DIteratorConcept
>(); function_requires< Indexed2DIteratorConcept
>(); } }; template
struct StorageArrayConcept { typedef C container_type; typedef typename C::size_type size_type; typedef typename C::value_type value_type; void constraints () { function_requires< RandomAccessContainerConcept
>(); size_type n (0); // Sizing constructor container_type c = container_type (n); // Initialised sizing constructor container_type (n, value_type (5)); ignore_unused_variable_warning (c); } }; template
struct Mutable_StorageArrayConcept { typedef C container_type; typedef typename C::size_type size_type; typedef typename C::value_type value_type; typedef typename C::iterator iterator_type; void constraints () { function_requires< Mutable_RandomAccessContainerConcept
> (); size_type n (0); // Sizing constructor container_type c = container_type (n); // Initialised sizing constructor c = container_type (n, value_type (3)); // Resize c.resize (n, value_type (5)); // Resize - none preserving c.resize (n); } }; template
struct StorageSparseConcept { typedef C container_type; typedef typename C::size_type size_type; void constraints () { function_requires< ReversibleContainerConcept
> (); } }; template
struct Mutable_StorageSparseConcept { typedef C container_type; typedef typename C::size_type size_type; typedef typename C::value_type value_type; typedef typename C::iterator iterator_type; void constraints () { // NOTE - Not Mutable_ReversibleContainerConcept function_requires< ReversibleContainerConcept
>(); container_type c = container_type (); value_type t = value_type (); iterator_type it = iterator_type (), it1 = iterator_type (), it2 = iterator_type (); // Insert c.insert (it, t); // Erase c.erase (it); // Range erase c.erase (it1, it2); // Clear c.clear (); } }; template
struct IndexSetConcept { typedef G generator_type; typedef typename G::size_type size_type; typedef typename G::value_type value_type; void constraints () { function_requires< AssignableConcept
>(); function_requires< ReversibleContainerConcept
>(); generator_type g = generator_type (); size_type n (0); value_type t; // Element access t = g (n); ignore_unused_variable_warning (t); } }; template
struct ScalarExpressionConcept { typedef SE scalar_expression_type; typedef typename SE::value_type value_type; void constraints () { scalar_expression_type *sp; scalar_expression_type s = *sp; value_type t; // Conversion t = s; ignore_unused_variable_warning (t); } }; template
struct VectorExpressionConcept { typedef VE vector_expression_type; typedef typename VE::type_category type_category; typedef typename VE::size_type size_type; typedef typename VE::value_type value_type; typedef typename VE::const_iterator const_iterator_type; typedef typename VE::const_reverse_iterator const_reverse_iterator_type; void constraints () { vector_expression_type *vp; const vector_expression_type *cvp; vector_expression_type v = *vp; const vector_expression_type cv = *cvp; size_type n (0), i (0); value_type t; // Find (internal?) const_iterator_type cit (v.find (i)); // Beginning of range const_iterator_type cit_begin (v.begin ()); // End of range const_iterator_type cit_end (v.end ()); // Size n = v.size (); // Beginning of reverse range const_reverse_iterator_type crit_begin (cv.rbegin ()); // End of reverse range const_reverse_iterator_type crit_end (cv.rend ()); // Element access t = v (i); ignore_unused_variable_warning (n); ignore_unused_variable_warning (cit); ignore_unused_variable_warning (cit_begin); ignore_unused_variable_warning (cit_end); ignore_unused_variable_warning (crit_begin); ignore_unused_variable_warning (crit_end); ignore_unused_variable_warning (t); } }; template
struct Mutable_VectorExpressionConcept { typedef VE vector_expression_type; typedef typename VE::size_type size_type; typedef typename VE::value_type value_type; typedef typename VE::iterator iterator_type; typedef typename VE::reverse_iterator reverse_iterator_type; void constraints () { function_requires< AssignableConcept
>(); function_requires< VectorExpressionConcept
>(); vector_expression_type *vp; vector_expression_type v = *vp, v1 = *vp, v2 = *vp; size_type i (0); value_type t = value_type (); // Find (internal?) iterator_type it (v.find (i)); // Beginning of range iterator_type it_begin (v.begin ()); // End of range iterator_type it_end (v.end ()); // Swap v1.swap (v2); // Beginning of reverse range reverse_iterator_type rit_begin (v.rbegin ()); // End of reverse range reverse_iterator_type rit_end (v.rend ()); // Assignments v2 = v1; v2.assign (v1); v2 += v1; v2.plus_assign (v1); v2 -= v1; v2.minus_assign (v1); v *= t; ignore_unused_variable_warning (it); ignore_unused_variable_warning (it_begin); ignore_unused_variable_warning (it_end); ignore_unused_variable_warning (rit_begin); ignore_unused_variable_warning (rit_end); } }; template
struct MatrixExpressionConcept { typedef ME matrix_expression_type; typedef typename ME::type_category type_category; typedef typename ME::size_type size_type; typedef typename ME::value_type value_type; typedef typename ME::const_iterator1 const_subiterator1_type; typedef typename ME::const_iterator2 const_subiterator2_type; typedef typename ME::const_reverse_iterator1 const_reverse_subiterator1_type; typedef typename ME::const_reverse_iterator2 const_reverse_subiterator2_type; void constraints () { matrix_expression_type *mp; const matrix_expression_type *cmp; matrix_expression_type m = *mp; const matrix_expression_type cm = *cmp; size_type n (0), i (0), j (0); value_type t; // Find (internal?) const_subiterator1_type cit1 (m.find1 (0, i, j)); const_subiterator2_type cit2 (m.find2 (0, i, j)); // Beginning of range const_subiterator1_type cit1_begin (m.begin1 ()); const_subiterator2_type cit2_begin (m.begin2 ()); // End of range const_subiterator1_type cit1_end (m.end1 ()); const_subiterator2_type cit2_end (m.end2 ()); // Size n = m.size1 (); n = m.size2 (); // Beginning of reverse range const_reverse_subiterator1_type crit1_begin (cm.rbegin1 ()); const_reverse_subiterator2_type crit2_begin (cm.rbegin2 ()); // End of reverse range const_reverse_subiterator1_type crit1_end (cm.rend1 ()); const_reverse_subiterator2_type crit2_end (cm.rend2 ()); // Element access t = m (i, j); ignore_unused_variable_warning (n); ignore_unused_variable_warning (cit1); ignore_unused_variable_warning (cit2); ignore_unused_variable_warning (cit1_begin); ignore_unused_variable_warning (cit2_begin); ignore_unused_variable_warning (cit1_end); ignore_unused_variable_warning (cit2_end); ignore_unused_variable_warning (crit1_begin); ignore_unused_variable_warning (crit2_begin); ignore_unused_variable_warning (crit1_end); ignore_unused_variable_warning (crit2_end); ignore_unused_variable_warning (t); } }; template
struct Mutable_MatrixExpressionConcept { typedef ME matrix_expression_type; typedef typename ME::size_type size_type; typedef typename ME::value_type value_type; typedef typename ME::iterator1 subiterator1_type; typedef typename ME::iterator2 subiterator2_type; typedef typename ME::reverse_iterator1 reverse_subiterator1_type; typedef typename ME::reverse_iterator2 reverse_subiterator2_type; void constraints () { function_requires< AssignableConcept
>(); function_requires< MatrixExpressionConcept
>(); matrix_expression_type *mp; matrix_expression_type m = *mp, m1 = *mp, m2 = *mp; size_type i (0), j (0); value_type t = value_type (); // Find (internal?) subiterator1_type it1 (m.find1 (0, i, j)); subiterator2_type it2 (m.find2 (0, i, j)); // Beginning of range subiterator1_type it1_begin (m.begin1 ()); subiterator2_type it2_begin (m.begin2 ()); // End of range subiterator1_type it1_end (m.end1 ()); subiterator2_type it2_end (m.end2 ()); // Swap m1.swap (m2); // Beginning of reverse range reverse_subiterator1_type rit1_begin (m.rbegin1 ()); reverse_subiterator2_type rit2_begin (m.rbegin2 ()); // End of reverse range reverse_subiterator1_type rit1_end (m.rend1 ()); reverse_subiterator2_type rit2_end (m.rend2 ()); // Assignments m2 = m1; m2.assign (m1); m2 += m1; m2.plus_assign (m1); m2 -= m1; m2.minus_assign (m1); m *= t; ignore_unused_variable_warning (it1); ignore_unused_variable_warning (it2); ignore_unused_variable_warning (it1_begin); ignore_unused_variable_warning (it2_begin); ignore_unused_variable_warning (it1_end); ignore_unused_variable_warning (it2_end); ignore_unused_variable_warning (rit1_begin); ignore_unused_variable_warning (rit2_begin); ignore_unused_variable_warning (rit1_end); ignore_unused_variable_warning (rit2_end); } }; template
struct VectorConcept { typedef V vector_type; typedef typename V::size_type size_type; typedef typename V::value_type value_type; typedef const value_type *const_pointer; void constraints () { function_requires< VectorExpressionConcept
>(); size_type n (0); size_type i (0); // Sizing constructor vector_type v (n); // Element support const_pointer p = v.find_element (i); ignore_unused_variable_warning (p); } }; template
struct Mutable_VectorConcept { typedef V vector_type; typedef typename V::size_type size_type; typedef typename V::value_type value_type; typedef value_type *pointer; void constraints () { function_requires< VectorConcept
>(); function_requires< Mutable_VectorExpressionConcept
>(); size_type n (0); value_type t = value_type (); size_type i (0); vector_type v; // Element support pointer p = v.find_element (i); // Element assignment value_type r = v.insert_element (i, t); v.insert_element (i, t) = r; // Zeroing v.clear (); // Resize v.resize (n); ignore_unused_variable_warning (p); ignore_unused_variable_warning (r); } }; template
struct SparseVectorConcept { typedef V vector_type; typedef typename V::size_type size_type; void constraints () { function_requires< VectorConcept
>(); } }; template
struct Mutable_SparseVectorConcept { typedef V vector_type; typedef typename V::size_type size_type; typedef typename V::value_type value_type; void constraints () { function_requires< SparseVectorConcept
>(); function_requires< Mutable_VectorConcept
>(); size_type i (0); vector_type v; // Element erasure v.erase_element (i); } }; template
struct MatrixConcept { typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::value_type value_type; typedef const value_type *const_pointer; void constraints () { function_requires< MatrixExpressionConcept
>(); size_type n (0); size_type i (0), j (0); // Sizing constructor matrix_type m (n, n); // Element support #ifndef SKIP_BAD const_pointer p = m.find_element (i, j); #else const_pointer p; ignore_unused_variable_warning (i); ignore_unused_variable_warning (j); #endif ignore_unused_variable_warning (p); } }; template
struct Mutable_MatrixConcept { typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::value_type value_type; typedef value_type *pointer; void constraints () { function_requires< MatrixConcept
>(); function_requires< Mutable_MatrixExpressionConcept
>(); size_type n (0); value_type t = value_type (); size_type i (0), j (0); matrix_type m; // Element support #ifndef SKIP_BAD pointer p = m.find_element (i, j); ignore_unused_variable_warning (i); ignore_unused_variable_warning (j); #else pointer p; #endif // Element assigment value_type r = m.insert_element (i, j, t); m.insert_element (i, j, t) = r; // Zeroing m.clear (); // Resize m.resize (n, n); m.resize (n, n, false); ignore_unused_variable_warning (p); ignore_unused_variable_warning (r); } }; template
struct SparseMatrixConcept { typedef M matrix_type; typedef typename M::size_type size_type; void constraints () { function_requires< MatrixConcept
>(); } }; template
struct Mutable_SparseMatrixConcept { typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::value_type value_type; void constraints () { function_requires< SparseMatrixConcept
>(); function_requires< Mutable_MatrixConcept
>(); size_type i (0), j (0); matrix_type m; // Elemnent erasure m.erase_element (i, j); } }; template
T ZeroElement (T); template<> float ZeroElement (float) { return 0.f; } template<> double ZeroElement (double) { return 0.; } template<> vector
ZeroElement (vector
) { return zero_vector
(); } template<> vector
ZeroElement (vector
) { return zero_vector
(); } template<> matrix
ZeroElement (matrix
) { return zero_matrix
(); } template<> matrix
ZeroElement (matrix
) { return zero_matrix
(); } template<> std::complex
ZeroElement (std::complex
) { return std::complex
(0.f); } template<> std::complex
ZeroElement (std::complex
) { return std::complex
(0.); } template<> vector
> ZeroElement (vector
>) { return zero_vector
> (); } template<> vector
> ZeroElement (vector
>) { return zero_vector
> (); } template<> matrix
> ZeroElement (matrix
>) { return zero_matrix
> (); } template<> matrix
> ZeroElement (matrix
>) { return zero_matrix
> (); } template
T OneElement (T); template<> float OneElement (float) { return 1.f; } template<> double OneElement (double) { return 1.; } template<> matrix
OneElement (matrix
) { return identity_matrix
(); } template<> matrix
OneElement (matrix
) { return identity_matrix
(); } template<> std::complex
OneElement (std::complex
) { return std::complex
(1.f); } template<> std::complex
OneElement (std::complex
) { return std::complex
(1.); } template<> matrix
> OneElement (matrix
>) { return identity_matrix
> (); } template<> matrix
> OneElement (matrix
>) { return identity_matrix
> (); } template
bool operator == (const vector_expression
&e1, const vector_expression
&e2) { typedef typename promote_traits
::promote_type value_type; typedef typename type_traits
::real_type real_type; return norm_inf (e1 - e2) == real_type/*zero*/(); } template
bool operator == (const matrix_expression
&e1, const matrix_expression
&e2) { typedef typename promote_traits
::promote_type value_type; typedef typename type_traits
::real_type real_type; return norm_inf (e1 - e2) == real_type/*zero*/(); } template
struct AdditiveAbelianGroupConcept { typedef T value_type; void constraints () { bool r; value_type a = value_type (), b = value_type (), c = value_type (); r = (a + b) + c == a + (b + c); r = ZeroElement (value_type ()) + a == a; r = a + ZeroElement (value_type ()) == a; r = a + (- a) == ZeroElement (value_type ()); r = (- a) + a == ZeroElement (value_type ()); r = a + b == b + a; ignore_unused_variable_warning (r); } }; template
struct MultiplicativeAbelianGroupConcept { typedef T value_type; void constraints () { bool r; value_type a = value_type (), b = value_type (), c = value_type (); r = (a * b) * c == a * (b * c); r = OneElement (value_type ()) * a == a; r = a * OneElement (value_type ()) == a; r = a * (OneElement (value_type ()) / a) == a; r = (OneElement (value_type ()) / a) * a == a; r = a * b == b * a; ignore_unused_variable_warning (r); } }; template
struct RingWithIdentityConcept { typedef T value_type; void constraints () { function_requires< AdditiveAbelianGroupConcept
>(); bool r; value_type a = value_type (), b = value_type (), c = value_type (); r = (a * b) * c == a * (b * c); r = (a + b) * c == a * c + b * c; r = OneElement (value_type ()) * a == a; r = a * OneElement (value_type ()) == a; ignore_unused_variable_warning (r); } }; template
struct Prod_RingWithIdentityConcept { typedef T value_type; void constraints () { function_requires< AdditiveAbelianGroupConcept
>(); bool r; value_type a = value_type (), b = value_type (), c = value_type (); r = prod (T (prod (a, b)), c) == prod (a, T (prod (b, c))); r = prod (a + b, c) == prod (a, c) + prod (b, c); r = prod (OneElement (value_type ()), a) == a; r = prod (a, OneElement (value_type ())) == a; ignore_unused_variable_warning (r); } }; template
struct CommutativeRingWithIdentityConcept { typedef T value_type; void constraints () { function_requires< RingWithIdentityConcept
>(); bool r; value_type a = value_type (), b = value_type (); r = a * b == b * a; ignore_unused_variable_warning (r); } }; template
struct FieldConcept { typedef T value_type; void constraints () { function_requires< CommutativeRingWithIdentityConcept
>(); bool r; value_type a = value_type (); r = a == ZeroElement (value_type ()) || a * (OneElement (value_type ()) / a) == a; r = a == ZeroElement (value_type ()) || (OneElement (value_type ()) / a) * a == a; ignore_unused_variable_warning (r); } }; template
struct VectorSpaceConcept { typedef T value_type; typedef V vector_type; void constraints () { function_requires< FieldConcept
>(); function_requires< AdditiveAbelianGroupConcept
>(); bool r; value_type alpha = value_type (), beta = value_type (); vector_type a = vector_type (), b = vector_type (); r = alpha * (a + b) == alpha * a + alpha * b; r = (alpha + beta) * a == alpha * a + beta * a; r = (alpha * beta) * a == alpha * (beta * a); r = OneElement (value_type ()) * a == a; ignore_unused_variable_warning (r); } }; template
struct LinearOperatorConcept { typedef T value_type; typedef V vector_type; typedef M matrix_type; void constraints () { function_requires< VectorSpaceConcept
>(); bool r; value_type alpha = value_type (), beta = value_type (); vector_type a = vector_type (), b = vector_type (); matrix_type A = matrix_type (); r = prod (A, alpha * a + beta * b) == alpha * prod (A, a) + beta * prod (A, b); ignore_unused_variable_warning (r); } }; void concept_checks () { // Allow tests to be group to keep down compiler storage requirement #ifdef INTERAL #define INTERNAL_STORAGE #define INTERNAL_VECTOR #define INTERNAL_MATRIX #define INTERNAL_SPECIAL #define INTERNAL_SPARSE #define INTERNAL_EXPRESSION #endif // Element value type for tests typedef float T; // Storage Array #if defined (INTERNAL_STORAGE) || defined (INTERNAL_STORAGE_DENSE) { typedef std::vector
container_model; function_requires< Mutable_StorageArrayConcept
>(); function_requires< RandomAccessIteratorConcept
>(); function_requires< Mutable_RandomAccessIteratorConcept
>(); } { typedef bounded_array
container_model; function_requires< Mutable_StorageArrayConcept
>(); function_requires< RandomAccessIteratorConcept
>(); function_requires< Mutable_RandomAccessIteratorConcept
>(); } { typedef unbounded_array
container_model; function_requires< Mutable_StorageArrayConcept
>(); function_requires< RandomAccessIteratorConcept
>(); function_requires< Mutable_RandomAccessIteratorConcept
>(); } /* FIXME array_adaptors are in progress { typedef array_adaptor
container_model; function_requires< Mutable_StorageArrayConcept
>(); function_requires< RandomAccessIteratorConcept
>(); function_requires< Mutable_RandomAccessIteratorConcept
>(); } */ { typedef range container_model; function_requires< IndexSetConcept
>(); function_requires< RandomAccessIteratorConcept
>(); } { typedef slice container_model; function_requires< IndexSetConcept
>(); function_requires< RandomAccessIteratorConcept
>(); } { typedef indirect_array<> container_model; function_requires< IndexSetConcept
>(); function_requires< RandomAccessIteratorConcept
>(); } #endif // Storage Sparse #if defined (INTERNAL_STORAGE) || defined (INTERNAL_STORAGE_SPARSE) { typedef map_array
container_model; function_requires< Mutable_StorageSparseConcept
>(); function_requires< RandomAccessIteratorConcept
>(); function_requires< RandomAccessIteratorConcept
>(); } { typedef std::map
container_model; function_requires< Mutable_StorageSparseConcept
>(); function_requires< BidirectionalIteratorConcept
>(); function_requires< BidirectionalIteratorConcept
>(); } #endif // Vector #if defined (INTERNAL_VECTOR) || defined (INTERNAL_VECTOR_DENSE) { typedef vector
container_model; function_requires< RandomAccessContainerConcept
>(); function_requires< Mutable_VectorConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess1DIteratorConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess1DIteratorConcept
>(); } { typedef zero_vector
container_model; function_requires< VectorConcept
>(); function_requires< IndexedBidirectional1DIteratorConcept
>(); function_requires< IndexedBidirectional1DIteratorConcept
>(); } { typedef unit_vector
container_model; function_requires< VectorConcept
>(); function_requires< IndexedBidirectional1DIteratorConcept
>(); function_requires< IndexedBidirectional1DIteratorConcept
>(); } { typedef scalar_vector
container_model; function_requires< VectorConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); } { typedef c_vector
container_model; function_requires< Mutable_VectorConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess1DIteratorConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess1DIteratorConcept
>(); } #endif // Vector Proxies #if defined (INTERNAL_VECTOR) || defined (INTERNAL_VECTOR_PROXY) { typedef vector_range
> container_model; function_requires< Mutable_VectorExpressionConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess1DIteratorConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess1DIteratorConcept
>(); } { typedef vector_slice
> container_model; function_requires< Mutable_VectorExpressionConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess1DIteratorConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess1DIteratorConcept
>(); } { typedef vector_indirect
> container_model; function_requires< Mutable_VectorExpressionConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess1DIteratorConcept
>(); function_requires< IndexedRandomAccess1DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess1DIteratorConcept
>(); } #endif // Sparse Vector #if defined (INTERNAL_SPARSE) || defined (INTERNAL_VECTOR_SPARSE) { typedef mapped_vector
container_model; function_requires< Mutable_SparseVectorConcept
>(); function_requires< IndexedBidirectional1DIteratorConcept
>(); function_requires< Mutable_IndexedBidirectional1DIteratorConcept
>(); function_requires< IndexedBidirectional1DIteratorConcept
>(); function_requires< Mutable_IndexedBidirectional1DIteratorConcept
>(); } { typedef compressed_vector
container_model; function_requires< Mutable_SparseVectorConcept
>(); function_requires< IndexedBidirectional1DIteratorConcept
>(); function_requires< Mutable_IndexedBidirectional1DIteratorConcept
>(); function_requires< IndexedBidirectional1DIteratorConcept
>(); function_requires< Mutable_IndexedBidirectional1DIteratorConcept
>(); } { typedef coordinate_vector
container_model; function_requires< Mutable_SparseVectorConcept
>(); function_requires< IndexedBidirectional1DIteratorConcept
>(); function_requires< Mutable_IndexedBidirectional1DIteratorConcept
>(); function_requires< IndexedBidirectional1DIteratorConcept
>(); function_requires< Mutable_IndexedBidirectional1DIteratorConcept
>(); } #endif // Matrix #if defined (INTERNAL_MATRIX) || defined (INTERNAL_MATRIX_DENSE) { typedef matrix
container_model; function_requires< Mutable_MatrixConcept
> >(); function_requires< IndexedRandomAccess2DIteratorConcept
>(); function_requires< Mutable_IndexedRandomAccess2DIteratorConcept
>(); function_requires< IndexedRandomAccess2DIteratorConcept