x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btQuaternion.h - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\LinearMath\btQuaternion.h
旋转
特效
属性
历史版本
/* Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef SIMD__QUATERNION_H_ #define SIMD__QUATERNION_H_ #include "btVector3.h" class btQuaternion : public btQuadWord { public: btQuaternion() {} // template
// explicit Quaternion(const btScalar *v) : Tuple4
(v) {} btQuaternion(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w) : btQuadWord(x, y, z, w) {} btQuaternion(const btVector3& axis, const btScalar& angle) { setRotation(axis, angle); } btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) { setEuler(yaw, pitch, roll); } void setRotation(const btVector3& axis, const btScalar& angle) { btScalar d = axis.length(); assert(d != btScalar(0.0)); btScalar s = btSin(angle * btScalar(0.5)) / d; setValue(axis.x() * s, axis.y() * s, axis.z() * s, btCos(angle * btScalar(0.5))); } void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) { btScalar halfYaw = btScalar(yaw) * btScalar(0.5); btScalar halfPitch = btScalar(pitch) * btScalar(0.5); btScalar halfRoll = btScalar(roll) * btScalar(0.5); btScalar cosYaw = btCos(halfYaw); btScalar sinYaw = btSin(halfYaw); btScalar cosPitch = btCos(halfPitch); btScalar sinPitch = btSin(halfPitch); btScalar cosRoll = btCos(halfRoll); btScalar sinRoll = btSin(halfRoll); setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); } btQuaternion& operator+=(const btQuaternion& q) { m_x += q.x(); m_y += q.y(); m_z += q.z(); m_unusedW += q.m_unusedW; return *this; } btQuaternion& operator-=(const btQuaternion& q) { m_x -= q.x(); m_y -= q.y(); m_z -= q.z(); m_unusedW -= q.m_unusedW; return *this; } btQuaternion& operator*=(const btScalar& s) { m_x *= s; m_y *= s; m_z *= s; m_unusedW *= s; return *this; } btQuaternion& operator*=(const btQuaternion& q) { setValue(m_unusedW * q.x() + m_x * q.m_unusedW + m_y * q.z() - m_z * q.y(), m_unusedW * q.y() + m_y * q.m_unusedW + m_z * q.x() - m_x * q.z(), m_unusedW * q.z() + m_z * q.m_unusedW + m_x * q.y() - m_y * q.x(), m_unusedW * q.m_unusedW - m_x * q.x() - m_y * q.y() - m_z * q.z()); return *this; } btScalar dot(const btQuaternion& q) const { return m_x * q.x() + m_y * q.y() + m_z * q.z() + m_unusedW * q.m_unusedW; } btScalar length2() const { return dot(*this); } btScalar length() const { return btSqrt(length2()); } btQuaternion& normalize() { return *this /= length(); } SIMD_FORCE_INLINE btQuaternion operator*(const btScalar& s) const { return btQuaternion(x() * s, y() * s, z() * s, m_unusedW * s); } btQuaternion operator/(const btScalar& s) const { assert(s != btScalar(0.0)); return *this * (btScalar(1.0) / s); } btQuaternion& operator/=(const btScalar& s) { assert(s != btScalar(0.0)); return *this *= btScalar(1.0) / s; } btQuaternion normalized() const { return *this / length(); } btScalar angle(const btQuaternion& q) const { btScalar s = btSqrt(length2() * q.length2()); assert(s != btScalar(0.0)); return btAcos(dot(q) / s); } btScalar getAngle() const { btScalar s = btScalar(2.) * btAcos(m_unusedW); return s; } btQuaternion inverse() const { return btQuaternion(m_x, m_y, m_z, -m_unusedW); } SIMD_FORCE_INLINE btQuaternion operator+(const btQuaternion& q2) const { const btQuaternion& q1 = *this; return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_unusedW + q2.m_unusedW); } SIMD_FORCE_INLINE btQuaternion operator-(const btQuaternion& q2) const { const btQuaternion& q1 = *this; return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_unusedW - q2.m_unusedW); } SIMD_FORCE_INLINE btQuaternion operator-() const { const btQuaternion& q2 = *this; return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_unusedW); } SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const { btQuaternion diff,sum; diff = *this - qd; sum = *this + qd; if( diff.dot(diff) > sum.dot(sum) ) return qd; return (-qd); } btQuaternion slerp(const btQuaternion& q, const btScalar& t) const { btScalar theta = angle(q); if (theta != btScalar(0.0)) { btScalar d = btScalar(1.0) / btSin(theta); btScalar s0 = btSin((btScalar(1.0) - t) * theta); btScalar s1 = btSin(t * theta); return btQuaternion((m_x * s0 + q.x() * s1) * d, (m_y * s0 + q.y() * s1) * d, (m_z * s0 + q.z() * s1) * d, (m_unusedW * s0 + q.m_unusedW * s1) * d); } else { return *this; } } SIMD_FORCE_INLINE const btScalar& getW() const { return m_unusedW; } }; SIMD_FORCE_INLINE btQuaternion operator-(const btQuaternion& q) { return btQuaternion(-q.x(), -q.y(), -q.z(), -q.w()); } SIMD_FORCE_INLINE btQuaternion operator*(const btQuaternion& q1, const btQuaternion& q2) { return btQuaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(), q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(), q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(), q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); } SIMD_FORCE_INLINE btQuaternion operator*(const btQuaternion& q, const btVector3& w) { return btQuaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(), q.w() * w.y() + q.z() * w.x() - q.x() * w.z(), q.w() * w.z() + q.x() * w.y() - q.y() * w.x(), -q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); } SIMD_FORCE_INLINE btQuaternion operator*(const btVector3& w, const btQuaternion& q) { return btQuaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(), w.y() * q.w() + w.z() * q.x() - w.x() * q.z(), w.z() * q.w() + w.x() * q.y() - w.y() * q.x(), -w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); } SIMD_FORCE_INLINE btScalar dot(const btQuaternion& q1, const btQuaternion& q2) { return q1.dot(q2); } SIMD_FORCE_INLINE btScalar length(const btQuaternion& q) { return q.length(); } SIMD_FORCE_INLINE btScalar angle(const btQuaternion& q1, const btQuaternion& q2) { return q1.angle(q2); } SIMD_FORCE_INLINE btQuaternion inverse(const btQuaternion& q) { return q.inverse(); } SIMD_FORCE_INLINE btQuaternion slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t) { return q1.slerp(q2, t); } SIMD_FORCE_INLINE btVector3 quatRotate(const btQuaternion& rotation, const btVector3& v) { btQuaternion q = rotation * v; q *= rotation.inverse(); return btVector3(q.getX(),q.getY(),q.getZ()); } SIMD_FORCE_INLINE btQuaternion shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized { btVector3 c = v0.cross(v1); btScalar d = v0.dot(v1); if (d < -1.0 + SIMD_EPSILON) return btQuaternion(0.0f,1.0f,0.0f,0.0f); // just pick any vector btScalar s = btSqrt((1.0f + d) * 2.0f); btScalar rs = 1.0f / s; return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f); } SIMD_FORCE_INLINE btQuaternion shortestArcQuatNormalize2(btVector3& v0,btVector3& v1) { v0.normalize(); v1.normalize(); return shortestArcQuat(v0,v1); } #endif
btQuaternion.h
网页地址
文件地址
上一页
16/27
下一页
下载
( 8 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.