x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btCollisionWorld.cpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletCollision\CollisionDispatch\btCollisionWorld.cpp
旋转
特效
属性
历史版本
/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btCollisionWorld.h" #include "btCollisionDispatcher.h" #include "BulletCollision/CollisionDispatch/btCollisionObject.h" #include "BulletCollision/CollisionShapes/btCollisionShape.h" #include "BulletCollision/CollisionShapes/btConvexShape.h" #include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting #include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h" #include "BulletCollision/CollisionShapes/btCompoundShape.h" #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h" #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h" #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h" #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h" #include "LinearMath/btAabbUtil2.h" #include "LinearMath/btQuickprof.h" #include "LinearMath/btStackAlloc.h" //When the user doesn't provide dispatcher or broadphase, create basic versions (and delete them in destructor) #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" #include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h" #include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h" btCollisionWorld::btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache, btCollisionConfiguration* collisionConfiguration) :m_dispatcher1(dispatcher), m_broadphasePairCache(pairCache), m_debugDrawer(0) { m_stackAlloc = collisionConfiguration->getStackAllocator(); m_dispatchInfo.m_stackAllocator = m_stackAlloc; } btCollisionWorld::~btCollisionWorld() { //clean up remaining objects int i; for (i=0;i
getBroadphaseHandle(); if (bp) { // // only clear the cached algorithms // getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1); getBroadphase()->destroyProxy(bp,m_dispatcher1); } } } void btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup,short int collisionFilterMask) { //check that the object isn't already added btAssert( m_collisionObjects.findLinearSearch(collisionObject) == m_collisionObjects.size()); m_collisionObjects.push_back(collisionObject); //calculate new AABB btTransform trans = collisionObject->getWorldTransform(); btVector3 minAabb; btVector3 maxAabb; collisionObject->getCollisionShape()->getAabb(trans,minAabb,maxAabb); int type = collisionObject->getCollisionShape()->getShapeType(); collisionObject->setBroadphaseHandle( getBroadphase()->createProxy( minAabb, maxAabb, type, collisionObject, collisionFilterGroup, collisionFilterMask, m_dispatcher1 )) ; } void btCollisionWorld::updateAabbs() { BT_PROFILE("updateAabbs"); btTransform predictedTrans; for ( int i=0;i
isActive()) { btPoint3 minAabb,maxAabb; colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb); btBroadphaseInterface* bp = (btBroadphaseInterface*)m_broadphasePairCache; //moving objects should be moderately sized, probably something wrong if not if ( colObj->isStaticObject() || ((maxAabb-minAabb).length2() < btScalar(1e12))) { bp->setAabb(colObj->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1); } else { //something went wrong, investigate //this assert is unwanted in 3D modelers (danger of loosing work) colObj->setActivationState(DISABLE_SIMULATION); static bool reportMe = true; if (reportMe && m_debugDrawer) { reportMe = false; m_debugDrawer->reportErrorWarning("Overflow in AABB, object removed from simulation"); m_debugDrawer->reportErrorWarning("If you can reproduce this, please email bugs@continuousphysics.com\n"); m_debugDrawer->reportErrorWarning("Please include above information, your Platform, version of OS.\n"); m_debugDrawer->reportErrorWarning("Thanks.\n"); } } } } } void btCollisionWorld::performDiscreteCollisionDetection() { BT_PROFILE("performDiscreteCollisionDetection"); btDispatcherInfo& dispatchInfo = getDispatchInfo(); updateAabbs(); { m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1); } btDispatcher* dispatcher = getDispatcher(); { BT_PROFILE("dispatchAllCollisionPairs"); if (dispatcher) dispatcher->dispatchAllCollisionPairs(m_broadphasePairCache->getOverlappingPairCache(),dispatchInfo,m_dispatcher1); } } void btCollisionWorld::removeCollisionObject(btCollisionObject* collisionObject) { //bool removeFromBroadphase = false; { btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle(); if (bp) { // // only clear the cached algorithms // getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1); getBroadphase()->destroyProxy(bp,m_dispatcher1); collisionObject->setBroadphaseHandle(0); } } //swapremove m_collisionObjects.remove(collisionObject); } void btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans, btCollisionObject* collisionObject, const btCollisionShape* collisionShape, const btTransform& colObjWorldTransform, RayResultCallback& resultCallback,short int collisionFilterMask) { btSphereShape pointShape(btScalar(0.0)); pointShape.setMargin(0.f); const btConvexShape* castShape = &pointShape; if (collisionShape->isConvex()) { btConvexCast::CastResult castResult; castResult.m_fraction = resultCallback.m_closestHitFraction; btConvexShape* convexShape = (btConvexShape*) collisionShape; btVoronoiSimplexSolver simplexSolver; #define USE_SUBSIMPLEX_CONVEX_CAST 1 #ifdef USE_SUBSIMPLEX_CONVEX_CAST btSubsimplexConvexCast convexCaster(castShape,convexShape,&simplexSolver); #else //btGjkConvexCast convexCaster(castShape,convexShape,&simplexSolver); //btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0); #endif //#USE_SUBSIMPLEX_CONVEX_CAST if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,colObjWorldTransform,colObjWorldTransform,castResult)) { //add hit if (castResult.m_normal.length2() > btScalar(0.0001)) { if (castResult.m_fraction < resultCallback.m_closestHitFraction) { #ifdef USE_SUBSIMPLEX_CONVEX_CAST //rotate normal into worldspace castResult.m_normal = rayFromTrans.getBasis() * castResult.m_normal; #endif //USE_SUBSIMPLEX_CONVEX_CAST castResult.m_normal.normalize(); btCollisionWorld::LocalRayResult localRayResult ( collisionObject, 0, castResult.m_normal, castResult.m_fraction ); bool normalInWorldSpace = true; resultCallback.AddSingleResult(localRayResult, normalInWorldSpace); } } } } else { if (collisionShape->isConcave()) { if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE) { ///optimized version for btBvhTriangleMeshShape btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape; btTransform worldTocollisionObject = colObjWorldTransform.inverse(); btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin(); btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin(); //ConvexCast::CastResult struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback { btCollisionWorld::RayResultCallback* m_resultCallback; btCollisionObject* m_collisionObject; btTriangleMeshShape* m_triangleMesh; BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to, btCollisionWorld::RayResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh): btTriangleRaycastCallback(from,to), m_resultCallback(resultCallback), m_collisionObject(collisionObject), m_triangleMesh(triangleMesh) { } virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex ) { btCollisionWorld::LocalShapeInfo shapeInfo; shapeInfo.m_shapePart = partId; shapeInfo.m_triangleIndex = triangleIndex; btCollisionWorld::LocalRayResult rayResult (m_collisionObject, &shapeInfo, hitNormalLocal, hitFraction); bool normalInWorldSpace = false; return m_resultCallback->AddSingleResult(rayResult,normalInWorldSpace); } }; BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,triangleMesh); rcb.m_hitFraction = resultCallback.m_closestHitFraction; triangleMesh->performRaycast(&rcb,rayFromLocal,rayToLocal); } else { btTriangleMeshShape* triangleMesh = (btTriangleMeshShape*)collisionShape; btTransform worldTocollisionObject = colObjWorldTransform.inverse(); btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin(); btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin(); //ConvexCast::CastResult struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback { btCollisionWorld::RayResultCallback* m_resultCallback; btCollisionObject* m_collisionObject; btTriangleMeshShape* m_triangleMesh; BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to, btCollisionWorld::RayResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh): btTriangleRaycastCallback(from,to), m_resultCallback(resultCallback), m_collisionObject(collisionObject), m_triangleMesh(triangleMesh) { } virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex ) { btCollisionWorld::LocalShapeInfo shapeInfo; shapeInfo.m_shapePart = partId; shapeInfo.m_triangleIndex = triangleIndex; btCollisionWorld::LocalRayResult rayResult (m_collisionObject, &shapeInfo, hitNormalLocal, hitFraction); bool normalInWorldSpace = false; return m_resultCallback->AddSingleResult(rayResult,normalInWorldSpace); } }; BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,triangleMesh); rcb.m_hitFraction = resultCallback.m_closestHitFraction; btVector3 rayAabbMinLocal = rayFromLocal; rayAabbMinLocal.setMin(rayToLocal); btVector3 rayAabbMaxLocal = rayFromLocal; rayAabbMaxLocal.setMax(rayToLocal); triangleMesh->processAllTriangles(&rcb,rayAabbMinLocal,rayAabbMaxLocal); } } else { //todo: use AABB tree or other BVH acceleration structure! if (collisionShape->isCompound()) { const btCompoundShape* compoundShape = static_cast
(collisionShape); int i=0; for (i=0;i
getNumChildShapes();i++) { btTransform childTrans = compoundShape->getChildTransform(i); const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i); btTransform childWorldTrans = colObjWorldTransform * childTrans; rayTestSingle(rayFromTrans,rayToTrans, collisionObject, childCollisionShape, childWorldTrans, resultCallback, collisionFilterMask); } } } } } void btCollisionWorld::objectQuerySingle(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans, btCollisionObject* collisionObject, const btCollisionShape* collisionShape, const btTransform& colObjWorldTransform, ConvexResultCallback& resultCallback,short int collisionFilterMask) { if (collisionShape->isConvex()) { btConvexCast::CastResult castResult; castResult.m_fraction = btScalar(1.);//?? btConvexShape* convexShape = (btConvexShape*) collisionShape; btVoronoiSimplexSolver simplexSolver; btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0); if (convexCaster.calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult)) { //add hit if (castResult.m_normal.length2() > btScalar(0.0001)) { if (castResult.m_fraction < resultCallback.m_closestHitFraction) { castResult.m_normal.normalize(); btCollisionWorld::LocalConvexResult localConvexResult ( collisionObject, 0, castResult.m_normal, castResult.m_hitPoint, castResult.m_fraction ); bool normalInWorldSpace = true; resultCallback.AddSingleResult(localConvexResult, normalInWorldSpace); } } } } else { if (collisionShape->isConcave()) { if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE) { btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape; btTransform worldTocollisionObject = colObjWorldTransform.inverse(); btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin(); btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin(); // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis()); //ConvexCast::CastResult struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback { btCollisionWorld::ConvexResultCallback* m_resultCallback; btCollisionObject* m_collisionObject; btTriangleMeshShape* m_triangleMesh; BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to, btCollisionWorld::ConvexResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh, const btTransform& triangleToWorld): btTriangleConvexcastCallback(castShape, from,to, triangleToWorld), m_resultCallback(resultCallback), m_collisionObject(collisionObject), m_triangleMesh(triangleMesh) { } virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex ) { btCollisionWorld::LocalShapeInfo shapeInfo; shapeInfo.m_shapePart = partId; shapeInfo.m_triangleIndex = triangleIndex; if (hitFraction <= m_resultCallback->m_closestHitFraction) { btCollisionWorld::LocalConvexResult convexResult (m_collisionObject, &shapeInfo, hitNormalLocal, hitPointLocal, hitFraction); bool normalInWorldSpace = true; return m_resultCallback->AddSingleResult(convexResult,normalInWorldSpace); } return hitFraction; } }; BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,collisionObject,triangleMesh, colObjWorldTransform); tccb.m_hitFraction = resultCallback.m_closestHitFraction; btVector3 boxMinLocal, boxMaxLocal; castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal); triangleMesh->performConvexcast(&tccb,convexFromLocal,convexToLocal,boxMinLocal, boxMaxLocal); } else { btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape; btTransform worldTocollisionObject = colObjWorldTransform.inverse(); btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin(); btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin(); // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis()); //ConvexCast::CastResult struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback { btCollisionWorld::ConvexResultCallback* m_resultCallback; btCollisionObject* m_collisionObject; btTriangleMeshShape* m_triangleMesh; BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to, btCollisionWorld::ConvexResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh, const btTransform& triangleToWorld): btTriangleConvexcastCallback(castShape, from,to, triangleToWorld), m_resultCallback(resultCallback), m_collisionObject(collisionObject), m_triangleMesh(triangleMesh) { } virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex ) { btCollisionWorld::LocalShapeInfo shapeInfo; shapeInfo.m_shapePart = partId; shapeInfo.m_triangleIndex = triangleIndex; if (hitFraction <= m_resultCallback->m_closestHitFraction) { btCollisionWorld::LocalConvexResult convexResult (m_collisionObject, &shapeInfo, hitNormalLocal, hitPointLocal, hitFraction); bool normalInWorldSpace = false; return m_resultCallback->AddSingleResult(convexResult,normalInWorldSpace); } return hitFraction; } }; BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,collisionObject,triangleMesh, colObjWorldTransform); tccb.m_hitFraction = resultCallback.m_closestHitFraction; btVector3 boxMinLocal, boxMaxLocal; castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal); btVector3 rayAabbMinLocal = convexFromLocal; rayAabbMinLocal.setMin(convexToLocal); btVector3 rayAabbMaxLocal = convexFromLocal; rayAabbMaxLocal.setMax(convexToLocal); rayAabbMinLocal += boxMinLocal; rayAabbMaxLocal += boxMaxLocal; triangleMesh->processAllTriangles(&tccb,rayAabbMinLocal,rayAabbMaxLocal); } } else { //todo: use AABB tree or other BVH acceleration structure! if (collisionShape->isCompound()) { const btCompoundShape* compoundShape = static_cast
(collisionShape); int i=0; for (i=0;i
getNumChildShapes();i++) { btTransform childTrans = compoundShape->getChildTransform(i); const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i); btTransform childWorldTrans = colObjWorldTransform * childTrans; objectQuerySingle(castShape, convexFromTrans,convexToTrans, collisionObject, childCollisionShape, childWorldTrans, resultCallback, collisionFilterMask); } } } } } void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback,short int collisionFilterMask) { btTransform rayFromTrans,rayToTrans; rayFromTrans.setIdentity(); rayFromTrans.setOrigin(rayFromWorld); rayToTrans.setIdentity(); rayToTrans.setOrigin(rayToWorld); /// go over all objects, and if the ray intersects their aabb, do a ray-shape query using convexCaster (CCD) int i; for (i=0;i
getBroadphaseHandle()->m_collisionFilterGroup & collisionFilterMask) { //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject(); btVector3 collisionObjectAabbMin,collisionObjectAabbMax; collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax); btScalar hitLambda = resultCallback.m_closestHitFraction; btVector3 hitNormal; if (btRayAabb(rayFromWorld,rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal)) { rayTestSingle(rayFromTrans,rayToTrans, collisionObject, collisionObject->getCollisionShape(), collisionObject->getWorldTransform(), resultCallback); } } } } void btCollisionWorld::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, ConvexResultCallback& resultCallback,short int collisionFilterMask) { btTransform convexFromTrans,convexToTrans; convexFromTrans = convexFromWorld; convexToTrans = convexToWorld; btVector3 castShapeAabbMin, castShapeAabbMax; /* Compute AABB that encompasses angular movement */ { btVector3 linVel, angVel; btTransformUtil::calculateVelocity (convexFromTrans, convexToTrans, 1.0, linVel, angVel); btTransform R; R.setIdentity (); R.setRotation (convexFromTrans.getRotation()); castShape->calculateTemporalAabb (R, linVel, angVel, 1.0, castShapeAabbMin, castShapeAabbMax); } /// go over all objects, and if the ray intersects their aabb + cast shape aabb, // do a ray-shape query using convexCaster (CCD) int i; for (i=0;i
getBroadphaseHandle()->m_collisionFilterGroup & collisionFilterMask) { //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject(); btVector3 collisionObjectAabbMin,collisionObjectAabbMax; collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax); AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax); btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing btVector3 hitNormal; if (btRayAabb(convexFromWorld.getOrigin(),convexToWorld.getOrigin(),collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal)) { objectQuerySingle(castShape, convexFromTrans,convexToTrans, collisionObject, collisionObject->getCollisionShape(), collisionObject->getWorldTransform(), resultCallback); } } } }
btCollisionWorld.cpp
网页地址
文件地址
上一页
7/34
下一页
下载
( 23 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.