x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btBvhTriangleMeshShape.cpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletCollision\CollisionShapes\btBvhTriangleMeshShape.cpp
旋转
特效
属性
历史版本
/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ //#define DISABLE_BVH #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" #include "BulletCollision/CollisionShapes/btOptimizedBvh.h" ///Bvh Concave triangle mesh is a static-triangle mesh shape with Bounding Volume Hierarchy optimization. ///Uses an interface to access the triangles to allow for sharing graphics/physics triangles. btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression, bool buildBvh) :btTriangleMeshShape(meshInterface), m_bvh(0), m_useQuantizedAabbCompression(useQuantizedAabbCompression), m_ownsBvh(false) { //construct bvh from meshInterface #ifndef DISABLE_BVH btVector3 bvhAabbMin,bvhAabbMax; meshInterface->calculateAabbBruteForce(bvhAabbMin,bvhAabbMax); if (buildBvh) { void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16); m_bvh = new (mem) btOptimizedBvh(); m_bvh->build(meshInterface,m_useQuantizedAabbCompression,bvhAabbMin,bvhAabbMax); m_ownsBvh = true; } #endif //DISABLE_BVH } btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression,const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,bool buildBvh) :btTriangleMeshShape(meshInterface), m_bvh(0), m_useQuantizedAabbCompression(useQuantizedAabbCompression), m_ownsBvh(false) { //construct bvh from meshInterface #ifndef DISABLE_BVH if (buildBvh) { void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16); m_bvh = new (mem) btOptimizedBvh(); m_bvh->build(meshInterface,m_useQuantizedAabbCompression,bvhAabbMin,bvhAabbMax); m_ownsBvh = true; } #endif //DISABLE_BVH } void btBvhTriangleMeshShape::partialRefitTree(const btVector3& aabbMin,const btVector3& aabbMax) { m_bvh->refitPartial( m_meshInterface,aabbMin,aabbMax ); m_localAabbMin.setMin(aabbMin); m_localAabbMax.setMax(aabbMax); } void btBvhTriangleMeshShape::refitTree(const btVector3& aabbMin,const btVector3& aabbMax) { m_bvh->refit( m_meshInterface, aabbMin,aabbMax ); recalcLocalAabb(); } btBvhTriangleMeshShape::~btBvhTriangleMeshShape() { if (m_ownsBvh) { m_bvh->~btOptimizedBvh(); btAlignedFree(m_bvh); } } void btBvhTriangleMeshShape::performRaycast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget) { struct MyNodeOverlapCallback : public btNodeOverlapCallback { btStridingMeshInterface* m_meshInterface; btTriangleCallback* m_callback; MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface) :m_meshInterface(meshInterface), m_callback(callback) { } virtual void processNode(int nodeSubPart, int nodeTriangleIndex) { btVector3 m_triangle[3]; const unsigned char *vertexbase; int numverts; PHY_ScalarType type; int stride; const unsigned char *indexbase; int indexstride; int numfaces; PHY_ScalarType indicestype; m_meshInterface->getLockedReadOnlyVertexIndexBase( &vertexbase, numverts, type, stride, &indexbase, indexstride, numfaces, indicestype, nodeSubPart); int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride); btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT); const btVector3& meshScaling = m_meshInterface->getScaling(); for (int j=2;j>=0;j--) { int graphicsindex = indicestype==PHY_SHORT?((short*)gfxbase)[j]:gfxbase[j]; btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride); m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ()); } /* Perform ray vs. triangle collision here */ m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex); m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart); } }; MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface); m_bvh->reportRayOverlappingNodex(&myNodeCallback,raySource,rayTarget); } void btBvhTriangleMeshShape::performConvexcast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax) { struct MyNodeOverlapCallback : public btNodeOverlapCallback { btStridingMeshInterface* m_meshInterface; btTriangleCallback* m_callback; MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface) :m_meshInterface(meshInterface), m_callback(callback) { } virtual void processNode(int nodeSubPart, int nodeTriangleIndex) { btVector3 m_triangle[3]; const unsigned char *vertexbase; int numverts; PHY_ScalarType type; int stride; const unsigned char *indexbase; int indexstride; int numfaces; PHY_ScalarType indicestype; m_meshInterface->getLockedReadOnlyVertexIndexBase( &vertexbase, numverts, type, stride, &indexbase, indexstride, numfaces, indicestype, nodeSubPart); int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride); btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT); const btVector3& meshScaling = m_meshInterface->getScaling(); for (int j=2;j>=0;j--) { int graphicsindex = indicestype==PHY_SHORT?((short*)gfxbase)[j]:gfxbase[j]; btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride); m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ()); } /* Perform ray vs. triangle collision here */ m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex); m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart); } }; MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface); m_bvh->reportBoxCastOverlappingNodex (&myNodeCallback, raySource, rayTarget, aabbMin, aabbMax); } //perform bvh tree traversal and report overlapping triangles to 'callback' void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const { #ifdef DISABLE_BVH //brute force traverse all triangles btTriangleMeshShape::processAllTriangles(callback,aabbMin,aabbMax); #else //first get all the nodes struct MyNodeOverlapCallback : public btNodeOverlapCallback { btStridingMeshInterface* m_meshInterface; btTriangleCallback* m_callback; btVector3 m_triangle[3]; MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface) :m_meshInterface(meshInterface), m_callback(callback) { } virtual void processNode(int nodeSubPart, int nodeTriangleIndex) { const unsigned char *vertexbase; int numverts; PHY_ScalarType type; int stride; const unsigned char *indexbase; int indexstride; int numfaces; PHY_ScalarType indicestype; m_meshInterface->getLockedReadOnlyVertexIndexBase( &vertexbase, numverts, type, stride, &indexbase, indexstride, numfaces, indicestype, nodeSubPart); int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride); btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT); const btVector3& meshScaling = m_meshInterface->getScaling(); for (int j=2;j>=0;j--) { int graphicsindex = indicestype==PHY_SHORT?((short*)gfxbase)[j]:gfxbase[j]; #ifdef DEBUG_TRIANGLE_MESH printf("%d ,",graphicsindex); #endif //DEBUG_TRIANGLE_MESH btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride); m_triangle[j] = btVector3( graphicsbase[0]*meshScaling.getX(), graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ()); #ifdef DEBUG_TRIANGLE_MESH printf("triangle vertices:%f,%f,%f\n",triangle[j].x(),triangle[j].y(),triangle[j].z()); #endif //DEBUG_TRIANGLE_MESH } m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex); m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart); } }; MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface); m_bvh->reportAabbOverlappingNodex(&myNodeCallback,aabbMin,aabbMax); #endif//DISABLE_BVH } void btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling) { if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON) { btTriangleMeshShape::setLocalScaling(scaling); if (m_ownsBvh) { m_bvh->~btOptimizedBvh(); btAlignedFree(m_bvh); } ///m_localAabbMin/m_localAabbMax is already re-calculated in btTriangleMeshShape. We could just scale aabb, but this needs some more work void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16); m_bvh = new(mem) btOptimizedBvh(); //rebuild the bvh... m_bvh->build(m_meshInterface,m_useQuantizedAabbCompression,m_localAabbMin,m_localAabbMax); } }
btBvhTriangleMeshShape.cpp
网页地址
文件地址
上一页
3/58
下一页
下载
( 9 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.