x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btConeTwistConstraint.cpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletDynamics\ConstraintSolver\btConeTwistConstraint.cpp
旋转
特效
属性
历史版本
/* Bullet Continuous Collision Detection and Physics Library btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Written by: Marcus Hennix */ #include "btConeTwistConstraint.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "LinearMath/btTransformUtil.h" #include "LinearMath/btMinMax.h" #include
btConeTwistConstraint::btConeTwistConstraint() :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE) { } btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& rbAFrame,const btTransform& rbBFrame) :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), m_angularOnly(false) { // flip axis for correct angles m_rbBFrame.getBasis()[1][0] *= btScalar(-1.); m_rbBFrame.getBasis()[1][1] *= btScalar(-1.); m_rbBFrame.getBasis()[1][2] *= btScalar(-1.); m_swingSpan1 = btScalar(1e30); m_swingSpan2 = btScalar(1e30); m_twistSpan = btScalar(1e30); m_biasFactor = 0.3f; m_relaxationFactor = 1.0f; m_solveTwistLimit = false; m_solveSwingLimit = false; } btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame) :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE,rbA),m_rbAFrame(rbAFrame), m_angularOnly(false) { m_rbBFrame = m_rbAFrame; // flip axis for correct angles m_rbBFrame.getBasis()[1][0] *= btScalar(-1.); m_rbBFrame.getBasis()[1][1] *= btScalar(-1.); m_rbBFrame.getBasis()[1][2] *= btScalar(-1.); m_rbBFrame.getBasis()[2][0] *= btScalar(-1.); m_rbBFrame.getBasis()[2][1] *= btScalar(-1.); m_rbBFrame.getBasis()[2][2] *= btScalar(-1.); m_swingSpan1 = btScalar(1e30); m_swingSpan2 = btScalar(1e30); m_twistSpan = btScalar(1e30); m_biasFactor = 0.3f; m_relaxationFactor = 1.0f; m_solveTwistLimit = false; m_solveSwingLimit = false; } void btConeTwistConstraint::buildJacobian() { m_appliedImpulse = btScalar(0.); //set bias, sign, clear accumulator m_swingCorrection = btScalar(0.); m_twistLimitSign = btScalar(0.); m_solveTwistLimit = false; m_solveSwingLimit = false; m_accTwistLimitImpulse = btScalar(0.); m_accSwingLimitImpulse = btScalar(0.); if (!m_angularOnly) { btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); btVector3 relPos = pivotBInW - pivotAInW; btVector3 normal[3]; if (relPos.length2() > SIMD_EPSILON) { normal[0] = relPos.normalized(); } else { normal[0].setValue(btScalar(1.0),0,0); } btPlaneSpace1(normal[0], normal[1], normal[2]); for (int i=0;i<3;i++) { new (&m_jac[i]) btJacobianEntry( m_rbA.getCenterOfMassTransform().getBasis().transpose(), m_rbB.getCenterOfMassTransform().getBasis().transpose(), pivotAInW - m_rbA.getCenterOfMassPosition(), pivotBInW - m_rbB.getCenterOfMassPosition(), normal[i], m_rbA.getInvInertiaDiagLocal(), m_rbA.getInvMass(), m_rbB.getInvInertiaDiagLocal(), m_rbB.getInvMass()); } } btVector3 b1Axis1,b1Axis2,b1Axis3; btVector3 b2Axis1,b2Axis2; b1Axis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(0); b2Axis1 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(0); btScalar swing1=btScalar(0.),swing2 = btScalar(0.); // Get Frame into world space if (m_swingSpan1 >= btScalar(0.05f)) { b1Axis2 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(1); swing1 = btAtan2Fast( b2Axis1.dot(b1Axis2),b2Axis1.dot(b1Axis1) ); } if (m_swingSpan2 >= btScalar(0.05f)) { b1Axis3 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(2); swing2 = btAtan2Fast( b2Axis1.dot(b1Axis3),b2Axis1.dot(b1Axis1) ); } btScalar RMaxAngle1Sq = 1.0f / (m_swingSpan1*m_swingSpan1); btScalar RMaxAngle2Sq = 1.0f / (m_swingSpan2*m_swingSpan2); btScalar EllipseAngle = btFabs(swing1)* RMaxAngle1Sq + btFabs(swing2) * RMaxAngle2Sq; if (EllipseAngle > 1.0f) { m_swingCorrection = EllipseAngle-1.0f; m_solveSwingLimit = true; // Calculate necessary axis & factors m_swingAxis = b2Axis1.cross(b1Axis2* b2Axis1.dot(b1Axis2) + b1Axis3* b2Axis1.dot(b1Axis3)); m_swingAxis.normalize(); btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f; m_swingAxis *= swingAxisSign; m_kSwing = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_swingAxis) + getRigidBodyB().computeAngularImpulseDenominator(m_swingAxis)); } // Twist limits if (m_twistSpan >= btScalar(0.)) { btVector3 b2Axis2 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(1); btQuaternion rotationArc = shortestArcQuat(b2Axis1,b1Axis1); btVector3 TwistRef = quatRotate(rotationArc,b2Axis2); btScalar twist = btAtan2Fast( TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2) ); btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? m_limitSoftness : btScalar(0.); if (twist <= -m_twistSpan*lockedFreeFactor) { m_twistCorrection = -(twist + m_twistSpan); m_solveTwistLimit = true; m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f; m_twistAxis.normalize(); m_twistAxis *= -1.0f; m_kTwist = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_twistAxis) + getRigidBodyB().computeAngularImpulseDenominator(m_twistAxis)); } else if (twist > m_twistSpan*lockedFreeFactor) { m_twistCorrection = (twist - m_twistSpan); m_solveTwistLimit = true; m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f; m_twistAxis.normalize(); m_kTwist = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_twistAxis) + getRigidBodyB().computeAngularImpulseDenominator(m_twistAxis)); } } } void btConeTwistConstraint::solveConstraint(btScalar timeStep) { btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); btScalar tau = btScalar(0.3); //linear part if (!m_angularOnly) { btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; for (int i=0;i<3;i++) { const btVector3& normal = m_jac[i].m_linearJointAxis; btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal(); btScalar rel_vel; rel_vel = normal.dot(vel); //positional error (zeroth order error) btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv; m_appliedImpulse += impulse; btVector3 impulse_vector = normal * impulse; m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition()); m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition()); } } { ///solve angular part const btVector3& angVelA = getRigidBodyA().getAngularVelocity(); const btVector3& angVelB = getRigidBodyB().getAngularVelocity(); // solve swing limit if (m_solveSwingLimit) { btScalar amplitude = ((angVelB - angVelA).dot( m_swingAxis )*m_relaxationFactor*m_relaxationFactor + m_swingCorrection*(btScalar(1.)/timeStep)*m_biasFactor); btScalar impulseMag = amplitude * m_kSwing; // Clamp the accumulated impulse btScalar temp = m_accSwingLimitImpulse; m_accSwingLimitImpulse = btMax(m_accSwingLimitImpulse + impulseMag, btScalar(0.0) ); impulseMag = m_accSwingLimitImpulse - temp; btVector3 impulse = m_swingAxis * impulseMag; m_rbA.applyTorqueImpulse(impulse); m_rbB.applyTorqueImpulse(-impulse); } // solve twist limit if (m_solveTwistLimit) { btScalar amplitude = ((angVelB - angVelA).dot( m_twistAxis )*m_relaxationFactor*m_relaxationFactor + m_twistCorrection*(btScalar(1.)/timeStep)*m_biasFactor ); btScalar impulseMag = amplitude * m_kTwist; // Clamp the accumulated impulse btScalar temp = m_accTwistLimitImpulse; m_accTwistLimitImpulse = btMax(m_accTwistLimitImpulse + impulseMag, btScalar(0.0) ); impulseMag = m_accTwistLimitImpulse - temp; btVector3 impulse = m_twistAxis * impulseMag; m_rbA.applyTorqueImpulse(impulse); m_rbB.applyTorqueImpulse(-impulse); } } } void btConeTwistConstraint::updateRHS(btScalar timeStep) { (void)timeStep; }
btConeTwistConstraint.cpp
网页地址
文件地址
上一页 1/21
下一页
下载
( 9 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.