x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btContactConstraint.cpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletDynamics\ConstraintSolver\btContactConstraint.cpp
旋转
特效
属性
历史版本
/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btContactConstraint.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "LinearMath/btVector3.h" #include "btJacobianEntry.h" #include "btContactSolverInfo.h" #include "LinearMath/btMinMax.h" #include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h" #define ASSERT2 assert #define USE_INTERNAL_APPLY_IMPULSE 1 //bilateral constraint between two dynamic objects void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1, btRigidBody& body2, const btVector3& pos2, btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep) { (void)timeStep; (void)distance; btScalar normalLenSqr = normal.length2(); ASSERT2(btFabs(normalLenSqr) < btScalar(1.1)); if (normalLenSqr > btScalar(1.1)) { impulse = btScalar(0.); return; } btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); //this jacobian entry could be re-used for all iterations btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(), body2.getCenterOfMassTransform().getBasis().transpose(), rel_pos1,rel_pos2,normal,body1.getInvInertiaDiagLocal(),body1.getInvMass(), body2.getInvInertiaDiagLocal(),body2.getInvMass()); btScalar jacDiagAB = jac.getDiagonal(); btScalar jacDiagABInv = btScalar(1.) / jacDiagAB; btScalar rel_vel = jac.getRelativeVelocity( body1.getLinearVelocity(), body1.getCenterOfMassTransform().getBasis().transpose() * body1.getAngularVelocity(), body2.getLinearVelocity(), body2.getCenterOfMassTransform().getBasis().transpose() * body2.getAngularVelocity()); btScalar a; a=jacDiagABInv; rel_vel = normal.dot(vel); //todo: move this into proper structure btScalar contactDamping = btScalar(0.2); #ifdef ONLY_USE_LINEAR_MASS btScalar massTerm = btScalar(1.) / (body1.getInvMass() + body2.getInvMass()); impulse = - contactDamping * rel_vel * massTerm; #else btScalar velocityImpulse = -contactDamping * rel_vel * jacDiagABInv; impulse = velocityImpulse; #endif } //response between two dynamic objects with friction btScalar resolveSingleCollision( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo) { const btVector3& pos1_ = contactPoint.getPositionWorldOnA(); const btVector3& pos2_ = contactPoint.getPositionWorldOnB(); const btVector3& normal = contactPoint.m_normalWorldOnB; //constant over all iterations btVector3 rel_pos1 = pos1_ - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pos2_ - body2.getCenterOfMassPosition(); btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar rel_vel; rel_vel = normal.dot(vel); btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ; // btScalar damping = solverInfo.m_damping ; btScalar Kerp = solverInfo.m_erp; btScalar Kcor = Kerp *Kfps; btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; assert(cpd); btScalar distance = cpd->m_penetration; btScalar positionalError = Kcor *-distance; btScalar velocityError = cpd->m_restitution - rel_vel;// * damping; btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv; btScalar velocityImpulse = velocityError * cpd->m_jacDiagABInv; btScalar normalImpulse = penetrationImpulse+velocityImpulse; // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse btScalar oldNormalImpulse = cpd->m_appliedImpulse; btScalar sum = oldNormalImpulse + normalImpulse; cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse; #ifdef USE_INTERNAL_APPLY_IMPULSE if (body1.getInvMass()) { body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse); } if (body2.getInvMass()) { body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse); } #else //USE_INTERNAL_APPLY_IMPULSE body1.applyImpulse(normal*(normalImpulse), rel_pos1); body2.applyImpulse(-normal*(normalImpulse), rel_pos2); #endif //USE_INTERNAL_APPLY_IMPULSE return normalImpulse; } btScalar resolveSingleFriction( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo) { (void)solverInfo; const btVector3& pos1 = contactPoint.getPositionWorldOnA(); const btVector3& pos2 = contactPoint.getPositionWorldOnB(); btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; assert(cpd); btScalar combinedFriction = cpd->m_friction; btScalar limit = cpd->m_appliedImpulse * combinedFriction; if (cpd->m_appliedImpulse>btScalar(0.)) //friction { //apply friction in the 2 tangential directions // 1st tangent btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar j1,j2; { btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel); // calculate j that moves us to zero relative velocity j1 = -vrel * cpd->m_jacDiagABInvTangent0; btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse0; cpd->m_accumulatedTangentImpulse0 = oldTangentImpulse + j1; btSetMin(cpd->m_accumulatedTangentImpulse0, limit); btSetMax(cpd->m_accumulatedTangentImpulse0, -limit); j1 = cpd->m_accumulatedTangentImpulse0 - oldTangentImpulse; } { // 2nd tangent btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel); // calculate j that moves us to zero relative velocity j2 = -vrel * cpd->m_jacDiagABInvTangent1; btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse1; cpd->m_accumulatedTangentImpulse1 = oldTangentImpulse + j2; btSetMin(cpd->m_accumulatedTangentImpulse1, limit); btSetMax(cpd->m_accumulatedTangentImpulse1, -limit); j2 = cpd->m_accumulatedTangentImpulse1 - oldTangentImpulse; } #ifdef USE_INTERNAL_APPLY_IMPULSE if (body1.getInvMass()) { body1.internalApplyImpulse(cpd->m_frictionWorldTangential0*body1.getInvMass(),cpd->m_frictionAngularComponent0A,j1); body1.internalApplyImpulse(cpd->m_frictionWorldTangential1*body1.getInvMass(),cpd->m_frictionAngularComponent1A,j2); } if (body2.getInvMass()) { body2.internalApplyImpulse(cpd->m_frictionWorldTangential0*body2.getInvMass(),cpd->m_frictionAngularComponent0B,-j1); body2.internalApplyImpulse(cpd->m_frictionWorldTangential1*body2.getInvMass(),cpd->m_frictionAngularComponent1B,-j2); } #else //USE_INTERNAL_APPLY_IMPULSE body1.applyImpulse((j1 * cpd->m_frictionWorldTangential0)+(j2 * cpd->m_frictionWorldTangential1), rel_pos1); body2.applyImpulse((j1 * -cpd->m_frictionWorldTangential0)+(j2 * -cpd->m_frictionWorldTangential1), rel_pos2); #endif //USE_INTERNAL_APPLY_IMPULSE } return cpd->m_appliedImpulse; } btScalar resolveSingleFrictionOriginal( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo) { (void)solverInfo; const btVector3& pos1 = contactPoint.getPositionWorldOnA(); const btVector3& pos2 = contactPoint.getPositionWorldOnB(); btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; assert(cpd); btScalar combinedFriction = cpd->m_friction; btScalar limit = cpd->m_appliedImpulse * combinedFriction; //if (contactPoint.m_appliedImpulse>btScalar(0.)) //friction { //apply friction in the 2 tangential directions { // 1st tangent btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel); // calculate j that moves us to zero relative velocity btScalar j = -vrel * cpd->m_jacDiagABInvTangent0; btScalar total = cpd->m_accumulatedTangentImpulse0 + j; btSetMin(total, limit); btSetMax(total, -limit); j = total - cpd->m_accumulatedTangentImpulse0; cpd->m_accumulatedTangentImpulse0 = total; body1.applyImpulse(j * cpd->m_frictionWorldTangential0, rel_pos1); body2.applyImpulse(j * -cpd->m_frictionWorldTangential0, rel_pos2); } { // 2nd tangent btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel); // calculate j that moves us to zero relative velocity btScalar j = -vrel * cpd->m_jacDiagABInvTangent1; btScalar total = cpd->m_accumulatedTangentImpulse1 + j; btSetMin(total, limit); btSetMax(total, -limit); j = total - cpd->m_accumulatedTangentImpulse1; cpd->m_accumulatedTangentImpulse1 = total; body1.applyImpulse(j * cpd->m_frictionWorldTangential1, rel_pos1); body2.applyImpulse(j * -cpd->m_frictionWorldTangential1, rel_pos2); } } return cpd->m_appliedImpulse; } //velocity + friction //response between two dynamic objects with friction btScalar resolveSingleCollisionCombined( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo) { const btVector3& pos1 = contactPoint.getPositionWorldOnA(); const btVector3& pos2 = contactPoint.getPositionWorldOnB(); const btVector3& normal = contactPoint.m_normalWorldOnB; btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar rel_vel; rel_vel = normal.dot(vel); btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ; //btScalar damping = solverInfo.m_damping ; btScalar Kerp = solverInfo.m_erp; btScalar Kcor = Kerp *Kfps; btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; assert(cpd); btScalar distance = cpd->m_penetration; btScalar positionalError = Kcor *-distance; btScalar velocityError = cpd->m_restitution - rel_vel;// * damping; btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv; btScalar velocityImpulse = velocityError * cpd->m_jacDiagABInv; btScalar normalImpulse = penetrationImpulse+velocityImpulse; // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse btScalar oldNormalImpulse = cpd->m_appliedImpulse; btScalar sum = oldNormalImpulse + normalImpulse; cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse; #ifdef USE_INTERNAL_APPLY_IMPULSE if (body1.getInvMass()) { body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse); } if (body2.getInvMass()) { body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse); } #else //USE_INTERNAL_APPLY_IMPULSE body1.applyImpulse(normal*(normalImpulse), rel_pos1); body2.applyImpulse(-normal*(normalImpulse), rel_pos2); #endif //USE_INTERNAL_APPLY_IMPULSE { //friction btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; rel_vel = normal.dot(vel); btVector3 lat_vel = vel - normal * rel_vel; btScalar lat_rel_vel = lat_vel.length(); btScalar combinedFriction = cpd->m_friction; if (cpd->m_appliedImpulse > 0) if (lat_rel_vel > SIMD_EPSILON) { lat_vel /= lat_rel_vel; btVector3 temp1 = body1.getInvInertiaTensorWorld() * rel_pos1.cross(lat_vel); btVector3 temp2 = body2.getInvInertiaTensorWorld() * rel_pos2.cross(lat_vel); btScalar friction_impulse = lat_rel_vel / (body1.getInvMass() + body2.getInvMass() + lat_vel.dot(temp1.cross(rel_pos1) + temp2.cross(rel_pos2))); btScalar normal_impulse = cpd->m_appliedImpulse * combinedFriction; btSetMin(friction_impulse, normal_impulse); btSetMax(friction_impulse, -normal_impulse); body1.applyImpulse(lat_vel * -friction_impulse, rel_pos1); body2.applyImpulse(lat_vel * friction_impulse, rel_pos2); } } return normalImpulse; } btScalar resolveSingleFrictionEmpty( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo) { (void)contactPoint; (void)body1; (void)body2; (void)solverInfo; return btScalar(0.); };
btContactConstraint.cpp
网页地址
文件地址
上一页
4/21
下一页
下载
( 14 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.