x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btGeneric6DofConstraint.cpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletDynamics\ConstraintSolver\btGeneric6DofConstraint.cpp
旋转
特效
属性
历史版本
/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ /* 2007-09-09 Refactored by Francisco Le�n email: projectileman@yahoo.com http://gimpact.sf.net */ #include "btGeneric6DofConstraint.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "LinearMath/btTransformUtil.h" #include
static const btScalar kSign[] = { btScalar(1.0), btScalar(-1.0), btScalar(1.0) }; static const int kAxisA[] = { 1, 0, 0 }; static const int kAxisB[] = { 2, 2, 1 }; #define GENERIC_D6_DISABLE_WARMSTARTING 1 btScalar btGetMatrixElem(const btMatrix3x3& mat, int index) { int i = index%3; int j = index/3; return mat[i][j]; } ///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz) { // // rot = cy*cz -cy*sz sy // // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx // // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy // if (btGetMatrixElem(mat,2) < btScalar(1.0)) { if (btGetMatrixElem(mat,2) > btScalar(-1.0)) { xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8)); xyz[1] = btAsin(btGetMatrixElem(mat,2)); xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0)); return true; } else { // WARNING. Not unique. XA - ZA = -atan2(r10,r11) xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); xyz[1] = -SIMD_HALF_PI; xyz[2] = btScalar(0.0); return false; } } else { // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11) xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); xyz[1] = SIMD_HALF_PI; xyz[2] = 0.0; } return false; } //////////////////////////// btRotationalLimitMotor //////////////////////////////////// int btRotationalLimitMotor::testLimitValue(btScalar test_value) { if(m_loLimit>m_hiLimit) { m_currentLimit = 0;//Free from violation return 0; } if (test_value < m_loLimit) { m_currentLimit = 1;//low limit violation m_currentLimitError = test_value - m_loLimit; return 1; } else if (test_value> m_hiLimit) { m_currentLimit = 2;//High limit violation m_currentLimitError = test_value - m_hiLimit; return 2; } else { m_currentLimit = 0;//Free from violation return 0; } return 0; } btScalar btRotationalLimitMotor::solveAngularLimits( btScalar timeStep,btVector3& axis,btScalar jacDiagABInv, btRigidBody * body0, btRigidBody * body1) { if (needApplyTorques()==false) return 0.0f; btScalar target_velocity = m_targetVelocity; btScalar maxMotorForce = m_maxMotorForce; //current error correction if (m_currentLimit!=0) { target_velocity = -m_ERP*m_currentLimitError/(timeStep); maxMotorForce = m_maxLimitForce; } maxMotorForce *= timeStep; // current velocity difference btVector3 vel_diff = body0->getAngularVelocity(); if (body1) { vel_diff -= body1->getAngularVelocity(); } btScalar rel_vel = axis.dot(vel_diff); // correction velocity btScalar motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel); if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON ) { return 0.0f;//no need for applying force } // correction impulse btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv; // clip correction impulse btScalar clippedMotorImpulse; //todo: should clip against accumulated impulse if (unclippedMotorImpulse>0.0f) { clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse; } else { clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse; } // sort with accumulated impulses btScalar lo = btScalar(-1e30); btScalar hi = btScalar(1e30); btScalar oldaccumImpulse = m_accumulatedImpulse; btScalar sum = oldaccumImpulse + clippedMotorImpulse; m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; btVector3 motorImp = clippedMotorImpulse * axis; body0->applyTorqueImpulse(motorImp); if (body1) body1->applyTorqueImpulse(-motorImp); return clippedMotorImpulse; } //////////////////////////// End btRotationalLimitMotor //////////////////////////////////// //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// btScalar btTranslationalLimitMotor::solveLinearAxis( btScalar timeStep, btScalar jacDiagABInv, btRigidBody& body1,const btVector3 &pointInA, btRigidBody& body2,const btVector3 &pointInB, int limit_index, const btVector3 & axis_normal_on_a) { ///find relative velocity btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition(); btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar rel_vel = axis_normal_on_a.dot(vel); /// apply displacement correction //positional error (zeroth order error) btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a); btScalar lo = btScalar(-1e30); btScalar hi = btScalar(1e30); btScalar minLimit = m_lowerLimit[limit_index]; btScalar maxLimit = m_upperLimit[limit_index]; //handle the limits if (minLimit < maxLimit) { { if (depth > maxLimit) { depth -= maxLimit; lo = btScalar(0.); } else { if (depth < minLimit) { depth -= minLimit; hi = btScalar(0.); } else { return 0.0f; } } } } btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv; btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index]; btScalar sum = oldNormalImpulse + normalImpulse; m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; btVector3 impulse_vector = axis_normal_on_a * normalImpulse; body1.applyImpulse( impulse_vector, rel_pos1); body2.applyImpulse(-impulse_vector, rel_pos2); return normalImpulse; } //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// btGeneric6DofConstraint::btGeneric6DofConstraint() :btTypedConstraint(D6_CONSTRAINT_TYPE), m_useLinearReferenceFrameA(true) { } btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB) , m_frameInA(frameInA) , m_frameInB(frameInB), m_useLinearReferenceFrameA(useLinearReferenceFrameA) { } void btGeneric6DofConstraint::calculateAngleInfo() { btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis(); matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff); // in euler angle mode we do not actually constrain the angular velocity // along the axes axis[0] and axis[2] (although we do use axis[1]) : // // to get constrain w2-w1 along ...not // ------ --------------------- ------ // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0] // d(angle[1])/dt = 0 ax[1] // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2] // // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. // to prove the result for angle[0], write the expression for angle[0] from // GetInfo1 then take the derivative. to prove this for angle[2] it is // easier to take the euler rate expression for d(angle[2])/dt with respect // to the components of w and set that to 0. btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0); btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2); m_calculatedAxis[1] = axis2.cross(axis0); m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); // if(m_debugDrawer) // { // // char buff[300]; // sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ", // m_calculatedAxisAngleDiff[0], // m_calculatedAxisAngleDiff[1], // m_calculatedAxisAngleDiff[2]); // m_debugDrawer->reportErrorWarning(buff); // } } void btGeneric6DofConstraint::calculateTransforms() { m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA; m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB; calculateAngleInfo(); } void btGeneric6DofConstraint::buildLinearJacobian( btJacobianEntry & jacLinear,const btVector3 & normalWorld, const btVector3 & pivotAInW,const btVector3 & pivotBInW) { new (&jacLinear) btJacobianEntry( m_rbA.getCenterOfMassTransform().getBasis().transpose(), m_rbB.getCenterOfMassTransform().getBasis().transpose(), pivotAInW - m_rbA.getCenterOfMassPosition(), pivotBInW - m_rbB.getCenterOfMassPosition(), normalWorld, m_rbA.getInvInertiaDiagLocal(), m_rbA.getInvMass(), m_rbB.getInvInertiaDiagLocal(), m_rbB.getInvMass()); } void btGeneric6DofConstraint::buildAngularJacobian( btJacobianEntry & jacAngular,const btVector3 & jointAxisW) { new (&jacAngular) btJacobianEntry(jointAxisW, m_rbA.getCenterOfMassTransform().getBasis().transpose(), m_rbB.getCenterOfMassTransform().getBasis().transpose(), m_rbA.getInvInertiaDiagLocal(), m_rbB.getInvInertiaDiagLocal()); } bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index) { btScalar angle = m_calculatedAxisAngleDiff[axis_index]; //test limits m_angularLimits[axis_index].testLimitValue(angle); return m_angularLimits[axis_index].needApplyTorques(); } void btGeneric6DofConstraint::buildJacobian() { //calculates transform calculateTransforms(); const btVector3& pivotAInW = m_calculatedTransformA.getOrigin(); const btVector3& pivotBInW = m_calculatedTransformB.getOrigin(); btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); btVector3 normalWorld; int i; //linear part for (i=0;i<3;i++) { if (m_linearLimits.isLimited(i)) { if (m_useLinearReferenceFrameA) normalWorld = m_calculatedTransformA.getBasis().getColumn(i); else normalWorld = m_calculatedTransformB.getBasis().getColumn(i); buildLinearJacobian( m_jacLinear[i],normalWorld , pivotAInW,pivotBInW); } } // angular part for (i=0;i<3;i++) { //calculates error angle if (testAngularLimitMotor(i)) { normalWorld = this->getAxis(i); // Create angular atom buildAngularJacobian(m_jacAng[i],normalWorld); } } } void btGeneric6DofConstraint::solveConstraint(btScalar timeStep) { m_timeStep = timeStep; //calculateTransforms(); int i; // linear btVector3 pointInA = m_calculatedTransformA.getOrigin(); btVector3 pointInB = m_calculatedTransformB.getOrigin(); btScalar jacDiagABInv; btVector3 linear_axis; for (i=0;i<3;i++) { if (m_linearLimits.isLimited(i)) { jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal(); if (m_useLinearReferenceFrameA) linear_axis = m_calculatedTransformA.getBasis().getColumn(i); else linear_axis = m_calculatedTransformB.getBasis().getColumn(i); m_linearLimits.solveLinearAxis( m_timeStep, jacDiagABInv, m_rbA,pointInA, m_rbB,pointInB, i,linear_axis); } } // angular btVector3 angular_axis; btScalar angularJacDiagABInv; for (i=0;i<3;i++) { if (m_angularLimits[i].needApplyTorques()) { // get axis angular_axis = getAxis(i); angularJacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal(); m_angularLimits[i].solveAngularLimits(m_timeStep,angular_axis,angularJacDiagABInv, &m_rbA,&m_rbB); } } } void btGeneric6DofConstraint::updateRHS(btScalar timeStep) { (void)timeStep; } btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const { return m_calculatedAxis[axis_index]; } btScalar btGeneric6DofConstraint::getAngle(int axis_index) const { return m_calculatedAxisAngleDiff[axis_index]; }
btGeneric6DofConstraint.cpp
网页地址
文件地址
上一页
7/21
下一页
下载
( 14 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.