x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btSequentialImpulseConstraintSolver.cpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletDynamics\ConstraintSolver\btSequentialImpulseConstraintSolver.cpp
旋转
特效
属性
历史版本
/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ //#define COMPUTE_IMPULSE_DENOM 1 //It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms. //#define FORCE_REFESH_CONTACT_MANIFOLDS 1 #include "btSequentialImpulseConstraintSolver.h" #include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "btContactConstraint.h" #include "btSolve2LinearConstraint.h" #include "btContactSolverInfo.h" #include "LinearMath/btIDebugDraw.h" #include "btJacobianEntry.h" #include "LinearMath/btMinMax.h" #include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" #include
#include "LinearMath/btStackAlloc.h" #include "LinearMath/btQuickprof.h" #include "btSolverBody.h" #include "btSolverConstraint.h" #include "LinearMath/btAlignedObjectArray.h" int totalCpd = 0; int gTotalContactPoints = 0; struct btOrderIndex { int m_manifoldIndex; int m_pointIndex; }; #define SEQUENTIAL_IMPULSE_MAX_SOLVER_POINTS 16384 static btOrderIndex gOrder[SEQUENTIAL_IMPULSE_MAX_SOLVER_POINTS]; unsigned long btSequentialImpulseConstraintSolver::btRand2() { m_btSeed2 = (1664525L*m_btSeed2 + 1013904223L) & 0xffffffff; return m_btSeed2; } //See ODE: adam's all-int straightforward(?) dRandInt (0..n-1) int btSequentialImpulseConstraintSolver::btRandInt2 (int n) { // seems good; xor-fold and modulus const unsigned long un = n; unsigned long r = btRand2(); // note: probably more aggressive than it needs to be -- might be // able to get away without one or two of the innermost branches. if (un <= 0x00010000UL) { r ^= (r >> 16); if (un <= 0x00000100UL) { r ^= (r >> 8); if (un <= 0x00000010UL) { r ^= (r >> 4); if (un <= 0x00000004UL) { r ^= (r >> 2); if (un <= 0x00000002UL) { r ^= (r >> 1); } } } } } return (int) (r % un); } bool MyContactDestroyedCallback(void* userPersistentData) { assert (userPersistentData); btConstraintPersistentData* cpd = (btConstraintPersistentData*)userPersistentData; btAlignedFree(cpd); totalCpd--; //printf("totalCpd = %i. DELETED Ptr %x\n",totalCpd,userPersistentData); return true; } btSequentialImpulseConstraintSolver::btSequentialImpulseConstraintSolver() :m_solverMode(SOLVER_RANDMIZE_ORDER | SOLVER_CACHE_FRIENDLY | SOLVER_USE_WARMSTARTING ), m_btSeed2(0) { gContactDestroyedCallback = &MyContactDestroyedCallback; //initialize default friction/contact funcs int i,j; for (i=0;i
m_angularVelocity = rb->getAngularVelocity() ; solverBody->m_centerOfMassPosition = collisionObject->getWorldTransform().getOrigin(); solverBody->m_friction = collisionObject->getFriction(); solverBody->m_invMass = rb->getInvMass(); solverBody->m_linearVelocity = rb->getLinearVelocity(); solverBody->m_originalBody = rb; solverBody->m_angularFactor = rb->getAngularFactor(); } else { solverBody->m_angularVelocity.setValue(0,0,0); solverBody->m_centerOfMassPosition = collisionObject->getWorldTransform().getOrigin(); solverBody->m_friction = collisionObject->getFriction(); solverBody->m_invMass = 0.f; solverBody->m_linearVelocity.setValue(0,0,0); solverBody->m_originalBody = 0; solverBody->m_angularFactor = 1.f; } } btScalar penetrationResolveFactor = btScalar(0.9); btScalar restitutionCurve(btScalar rel_vel, btScalar restitution) { btScalar rest = restitution * -rel_vel; return rest; } //velocity + friction //response between two dynamic objects with friction //SIMD_FORCE_INLINE btScalar resolveSingleCollisionCombinedCacheFriendly( btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& contactConstraint, const btContactSolverInfo& solverInfo) { (void)solverInfo; btScalar normalImpulse; // Optimized version of projected relative velocity, use precomputed cross products with normal // body1.getVelocityInLocalPoint(contactConstraint.m_rel_posA,vel1); // body2.getVelocityInLocalPoint(contactConstraint.m_rel_posB,vel2); // btVector3 vel = vel1 - vel2; // btScalar rel_vel = contactConstraint.m_contactNormal.dot(vel); btScalar rel_vel; btScalar vel1Dotn = contactConstraint.m_contactNormal.dot(body1.m_linearVelocity) + contactConstraint.m_relpos1CrossNormal.dot(body1.m_angularVelocity); btScalar vel2Dotn = contactConstraint.m_contactNormal.dot(body2.m_linearVelocity) + contactConstraint.m_relpos2CrossNormal.dot(body2.m_angularVelocity); rel_vel = vel1Dotn-vel2Dotn; btScalar positionalError = contactConstraint.m_penetration; btScalar velocityError = contactConstraint.m_restitution - rel_vel;// * damping; btScalar penetrationImpulse = positionalError * contactConstraint.m_jacDiagABInv; btScalar velocityImpulse = velocityError * contactConstraint.m_jacDiagABInv; normalImpulse = penetrationImpulse+velocityImpulse; // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse btScalar oldNormalImpulse = contactConstraint.m_appliedImpulse; btScalar sum = oldNormalImpulse + normalImpulse; contactConstraint.m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; btScalar oldVelocityImpulse = contactConstraint.m_appliedVelocityImpulse; btScalar velocitySum = oldVelocityImpulse + velocityImpulse; contactConstraint.m_appliedVelocityImpulse = btScalar(0.) > velocitySum ? btScalar(0.): velocitySum; normalImpulse = contactConstraint.m_appliedImpulse - oldNormalImpulse; if (body1.m_invMass) { body1.internalApplyImpulse(contactConstraint.m_contactNormal*body1.m_invMass, contactConstraint.m_angularComponentA,normalImpulse); } if (body2.m_invMass) { body2.internalApplyImpulse(contactConstraint.m_contactNormal*body2.m_invMass, contactConstraint.m_angularComponentB,-normalImpulse); } return normalImpulse; } #ifndef NO_FRICTION_TANGENTIALS //SIMD_FORCE_INLINE btScalar resolveSingleFrictionCacheFriendly( btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& contactConstraint, const btContactSolverInfo& solverInfo, btScalar appliedNormalImpulse) { (void)solverInfo; const btScalar combinedFriction = contactConstraint.m_friction; const btScalar limit = appliedNormalImpulse * combinedFriction; if (appliedNormalImpulse>btScalar(0.)) //friction { btScalar j1; { btScalar rel_vel; const btScalar vel1Dotn = contactConstraint.m_contactNormal.dot(body1.m_linearVelocity) + contactConstraint.m_relpos1CrossNormal.dot(body1.m_angularVelocity); const btScalar vel2Dotn = contactConstraint.m_contactNormal.dot(body2.m_linearVelocity) + contactConstraint.m_relpos2CrossNormal.dot(body2.m_angularVelocity); rel_vel = vel1Dotn-vel2Dotn; // calculate j that moves us to zero relative velocity j1 = -rel_vel * contactConstraint.m_jacDiagABInv; #define CLAMP_ACCUMULATED_FRICTION_IMPULSE 1 #ifdef CLAMP_ACCUMULATED_FRICTION_IMPULSE btScalar oldTangentImpulse = contactConstraint.m_appliedImpulse; contactConstraint.m_appliedImpulse = oldTangentImpulse + j1; if (limit < contactConstraint.m_appliedImpulse) { contactConstraint.m_appliedImpulse = limit; } else { if (contactConstraint.m_appliedImpulse < -limit) contactConstraint.m_appliedImpulse = -limit; } j1 = contactConstraint.m_appliedImpulse - oldTangentImpulse; #else if (limit < j1) { j1 = limit; } else { if (j1 < -limit) j1 = -limit; } #endif //CLAMP_ACCUMULATED_FRICTION_IMPULSE //GEN_set_min(contactConstraint.m_appliedImpulse, limit); //GEN_set_max(contactConstraint.m_appliedImpulse, -limit); } if (body1.m_invMass) { body1.internalApplyImpulse(contactConstraint.m_contactNormal*body1.m_invMass,contactConstraint.m_angularComponentA,j1); } if (body2.m_invMass) { body2.internalApplyImpulse(contactConstraint.m_contactNormal*body2.m_invMass,contactConstraint.m_angularComponentB,-j1); } } return 0.f; } #else //velocity + friction //response between two dynamic objects with friction btScalar resolveSingleFrictionCacheFriendly( btSolverBody& body1, btSolverBody& body2, btSolverConstraint& contactConstraint, const btContactSolverInfo& solverInfo) { btVector3 vel1; btVector3 vel2; btScalar normalImpulse(0.f); { const btVector3& normal = contactConstraint.m_contactNormal; if (contactConstraint.m_penetration < 0.f) return 0.f; body1.getVelocityInLocalPoint(contactConstraint.m_rel_posA,vel1); body2.getVelocityInLocalPoint(contactConstraint.m_rel_posB,vel2); btVector3 vel = vel1 - vel2; btScalar rel_vel; rel_vel = normal.dot(vel); btVector3 lat_vel = vel - normal * rel_vel; btScalar lat_rel_vel = lat_vel.length2(); btScalar combinedFriction = contactConstraint.m_friction; const btVector3& rel_pos1 = contactConstraint.m_rel_posA; const btVector3& rel_pos2 = contactConstraint.m_rel_posB; //if (contactConstraint.m_appliedVelocityImpulse > 0.f) if (lat_rel_vel > SIMD_EPSILON*SIMD_EPSILON) { lat_rel_vel = btSqrt(lat_rel_vel); lat_vel /= lat_rel_vel; btVector3 temp1 = body1.m_invInertiaWorld * rel_pos1.cross(lat_vel); btVector3 temp2 = body2.m_invInertiaWorld * rel_pos2.cross(lat_vel); btScalar friction_impulse = lat_rel_vel / (body1.m_invMass + body2.m_invMass + lat_vel.dot(temp1.cross(rel_pos1) + temp2.cross(rel_pos2))); btScalar normal_impulse = contactConstraint.m_appliedVelocityImpulse * combinedFriction; GEN_set_min(friction_impulse, normal_impulse); GEN_set_max(friction_impulse, -normal_impulse); body1.applyImpulse(lat_vel * -friction_impulse, rel_pos1); body2.applyImpulse(lat_vel * friction_impulse, rel_pos2); } } return normalImpulse; } #endif //NO_FRICTION_TANGENTIALS void btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation) { btRigidBody* body0=btRigidBody::upcast(colObj0); btRigidBody* body1=btRigidBody::upcast(colObj1); btSolverConstraint& solverConstraint = m_tmpSolverFrictionConstraintPool.expand(); solverConstraint.m_contactNormal = normalAxis; solverConstraint.m_solverBodyIdA = solverBodyIdA; solverConstraint.m_solverBodyIdB = solverBodyIdB; solverConstraint.m_constraintType = btSolverConstraint::BT_SOLVER_FRICTION_1D; solverConstraint.m_frictionIndex = frictionIndex; solverConstraint.m_friction = cp.m_combinedFriction; solverConstraint.m_originalContactPoint = 0; solverConstraint.m_appliedImpulse = btScalar(0.); solverConstraint.m_appliedVelocityImpulse = 0.f; solverConstraint.m_penetration = 0.f; { btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal); solverConstraint.m_relpos1CrossNormal = ftorqueAxis1; solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld()*ftorqueAxis1 : btVector3(0,0,0); } { btVector3 ftorqueAxis1 = rel_pos2.cross(solverConstraint.m_contactNormal); solverConstraint.m_relpos2CrossNormal = ftorqueAxis1; solverConstraint.m_angularComponentB = body1 ? body1->getInvInertiaTensorWorld()*ftorqueAxis1 : btVector3(0,0,0); } #ifdef COMPUTE_IMPULSE_DENOM btScalar denom0 = rb0->computeImpulseDenominator(pos1,solverConstraint.m_contactNormal); btScalar denom1 = rb1->computeImpulseDenominator(pos2,solverConstraint.m_contactNormal); #else btVector3 vec; btScalar denom0 = 0.f; btScalar denom1 = 0.f; if (body0) { vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1); denom0 = body0->getInvMass() + normalAxis.dot(vec); } if (body1) { vec = ( solverConstraint.m_angularComponentB).cross(rel_pos2); denom1 = body1->getInvMass() + normalAxis.dot(vec); } #endif //COMPUTE_IMPULSE_DENOM btScalar denom = relaxation/(denom0+denom1); solverConstraint.m_jacDiagABInv = denom; } btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc) { BT_PROFILE("solveGroupCacheFriendlySetup"); (void)stackAlloc; (void)debugDrawer; if (!(numConstraints + numManifolds)) { // printf("empty\n"); return 0.f; } btPersistentManifold* manifold = 0; btCollisionObject* colObj0=0,*colObj1=0; //btRigidBody* rb0=0,*rb1=0; #ifdef FORCE_REFESH_CONTACT_MANIFOLDS BEGIN_PROFILE("refreshManifolds"); int i; for (i=0;i
getBody1(); rb0 = (btRigidBody*)manifold->getBody0(); manifold->refreshContactPoints(rb0->getCenterOfMassTransform(),rb1->getCenterOfMassTransform()); } END_PROFILE("refreshManifolds"); #endif //FORCE_REFESH_CONTACT_MANIFOLDS btVector3 color(0,1,0); //int sizeofSB = sizeof(btSolverBody); //int sizeofSC = sizeof(btSolverConstraint); //if (1) { //if m_stackAlloc, try to pack bodies/constraints to speed up solving // btBlock* sablock; // sablock = stackAlloc->beginBlock(); // int memsize = 16; // unsigned char* stackMemory = stackAlloc->allocate(memsize); //todo: use stack allocator for this temp memory int minReservation = numManifolds*2; //m_tmpSolverBodyPool.reserve(minReservation); //don't convert all bodies, only the one we need so solver the constraints /* { for (int i=0;i
getIslandTag() >= 0)) { btAssert(rb->getCompanionId() < 0); int solverBodyId = m_tmpSolverBodyPool.size(); btSolverBody& solverBody = m_tmpSolverBodyPool.expand(); initSolverBody(&solverBody,rb); rb->setCompanionId(solverBodyId); } } } */ //m_tmpSolverConstraintPool.reserve(minReservation); //m_tmpSolverFrictionConstraintPool.reserve(minReservation); { int i; for (i=0;i
getBody0(); colObj1 = (btCollisionObject*)manifold->getBody1(); int solverBodyIdA=-1; int solverBodyIdB=-1; if (manifold->getNumContacts()) { if (colObj0->getIslandTag() >= 0) { if (colObj0->getCompanionId() >= 0) { //body has already been converted solverBodyIdA = colObj0->getCompanionId(); } else { solverBodyIdA = m_tmpSolverBodyPool.size(); btSolverBody& solverBody = m_tmpSolverBodyPool.expand(); initSolverBody(&solverBody,colObj0); colObj0->setCompanionId(solverBodyIdA); } } else { //create a static body solverBodyIdA = m_tmpSolverBodyPool.size(); btSolverBody& solverBody = m_tmpSolverBodyPool.expand(); initSolverBody(&solverBody,colObj0); } if (colObj1->getIslandTag() >= 0) { if (colObj1->getCompanionId() >= 0) { solverBodyIdB = colObj1->getCompanionId(); } else { solverBodyIdB = m_tmpSolverBodyPool.size(); btSolverBody& solverBody = m_tmpSolverBodyPool.expand(); initSolverBody(&solverBody,colObj1); colObj1->setCompanionId(solverBodyIdB); } } else { //create a static body solverBodyIdB = m_tmpSolverBodyPool.size(); btSolverBody& solverBody = m_tmpSolverBodyPool.expand(); initSolverBody(&solverBody,colObj1); } } btVector3 rel_pos1; btVector3 rel_pos2; btScalar relaxation; for (int j=0;j
getNumContacts();j++) { btManifoldPoint& cp = manifold->getContactPoint(j); if (debugDrawer) debugDrawer->drawContactPoint(cp.m_positionWorldOnB,cp.m_normalWorldOnB,cp.getDistance(),cp.getLifeTime(),color); if (cp.getDistance() <= btScalar(0.)) { const btVector3& pos1 = cp.getPositionWorldOnA(); const btVector3& pos2 = cp.getPositionWorldOnB(); rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin(); rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin(); relaxation = 1.f; btScalar rel_vel; btVector3 vel; int frictionIndex = m_tmpSolverConstraintPool.size(); { btSolverConstraint& solverConstraint = m_tmpSolverConstraintPool.expand(); btRigidBody* rb0 = btRigidBody::upcast(colObj0); btRigidBody* rb1 = btRigidBody::upcast(colObj1); solverConstraint.m_solverBodyIdA = solverBodyIdA; solverConstraint.m_solverBodyIdB = solverBodyIdB; solverConstraint.m_constraintType = btSolverConstraint::BT_SOLVER_CONTACT_1D; solverConstraint.m_originalContactPoint = &cp; btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB); solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0 : btVector3(0,0,0); btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB); solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*torqueAxis1 : btVector3(0,0,0); { #ifdef COMPUTE_IMPULSE_DENOM btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB); btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB); #else btVector3 vec; btScalar denom0 = 0.f; btScalar denom1 = 0.f; if (rb0) { vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1); denom0 = rb0->getInvMass() + cp.m_normalWorldOnB.dot(vec); } if (rb1) { vec = ( solverConstraint.m_angularComponentB).cross(rel_pos2); denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec); } #endif //COMPUTE_IMPULSE_DENOM btScalar denom = relaxation/(denom0+denom1); solverConstraint.m_jacDiagABInv = denom; } solverConstraint.m_contactNormal = cp.m_normalWorldOnB; solverConstraint.m_relpos1CrossNormal = rel_pos1.cross(cp.m_normalWorldOnB); solverConstraint.m_relpos2CrossNormal = rel_pos2.cross(cp.m_normalWorldOnB); btVector3 vel1 = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0); btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0); vel = vel1 - vel2; rel_vel = cp.m_normalWorldOnB.dot(vel); solverConstraint.m_penetration = cp.getDistance();///btScalar(infoGlobal.m_numIterations); solverConstraint.m_friction = cp.m_combinedFriction; solverConstraint.m_restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution); if (solverConstraint.m_restitution <= btScalar(0.)) { solverConstraint.m_restitution = 0.f; }; btScalar penVel = -solverConstraint.m_penetration/infoGlobal.m_timeStep; solverConstraint.m_penetration *= -(infoGlobal.m_erp/infoGlobal.m_timeStep); if (solverConstraint.m_restitution > penVel) { solverConstraint.m_penetration = btScalar(0.); } ///warm starting (or zero if disabled) if (m_solverMode & SOLVER_USE_WARMSTARTING) { solverConstraint.m_appliedImpulse = cp.m_appliedImpulse; } else { solverConstraint.m_appliedImpulse = 0.f; } solverConstraint.m_appliedVelocityImpulse = 0.f; } { btVector3 frictionDir1 = vel - cp.m_normalWorldOnB * rel_vel; btScalar lat_rel_vel = frictionDir1.length2(); if (lat_rel_vel > SIMD_EPSILON)//0.0f) { frictionDir1 /= btSqrt(lat_rel_vel); addFrictionConstraint(frictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); btVector3 frictionDir2 = frictionDir1.cross(cp.m_normalWorldOnB); frictionDir2.normalize();//?? addFrictionConstraint(frictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); } else { //re-calculate friction direction every frame, todo: check if this is really needed btVector3 frictionDir1,frictionDir2; btPlaneSpace1(cp.m_normalWorldOnB,frictionDir1,frictionDir2); addFrictionConstraint(frictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); addFrictionConstraint(frictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); } } } } } } } btContactSolverInfo info = infoGlobal; { int j; for (j=0;j
buildJacobian(); } } int numConstraintPool = m_tmpSolverConstraintPool.size(); int numFrictionPool = m_tmpSolverFrictionConstraintPool.size(); ///todo: use stack allocator for such temporarily memory, same for solver bodies/constraints m_orderTmpConstraintPool.resize(numConstraintPool); m_orderFrictionConstraintPool.resize(numFrictionPool); { int i; for (i=0;i
getRigidBodyA().getIslandTag() >= 0) && (constraint->getRigidBodyA().getCompanionId() >= 0)) { m_tmpSolverBodyPool[constraint->getRigidBodyA().getCompanionId()].writebackVelocity(); } if ((constraint->getRigidBodyB().getIslandTag() >= 0) && (constraint->getRigidBodyB().getCompanionId() >= 0)) { m_tmpSolverBodyPool[constraint->getRigidBodyB().getCompanionId()].writebackVelocity(); } constraint->solveConstraint(infoGlobal.m_timeStep); if ((constraint->getRigidBodyA().getIslandTag() >= 0) && (constraint->getRigidBodyA().getCompanionId() >= 0)) { m_tmpSolverBodyPool[constraint->getRigidBodyA().getCompanionId()].readVelocity(); } if ((constraint->getRigidBodyB().getIslandTag() >= 0) && (constraint->getRigidBodyB().getCompanionId() >= 0)) { m_tmpSolverBodyPool[constraint->getRigidBodyB().getCompanionId()].readVelocity(); } } { int numPoolConstraints = m_tmpSolverConstraintPool.size(); for (j=0;j
m_appliedImpulse = solveManifold.m_appliedImpulse; //do a callback here? } } return 0.f; } btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendly(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc) { int i; solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc); solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc); for ( i=0;i
getNumContacts();p++) { gOrder[totalPoints].m_manifoldIndex = j; gOrder[totalPoints].m_pointIndex = p; totalPoints++; } } } { int j; for (j=0;j
buildJacobian(); } } //should traverse the contacts random order... int iteration; { for ( iteration = 0;iteration
solveConstraint(info.m_timeStep); } for (j=0;j
getBody0(), (btRigidBody*)manifold->getBody1() ,manifold->getContactPoint(gOrder[j].m_pointIndex),info,iteration,debugDrawer); } for (j=0;j
getBody0(), (btRigidBody*)manifold->getBody1(),manifold->getContactPoint(gOrder[j].m_pointIndex),info,iteration,debugDrawer); } } } return btScalar(0.); } void btSequentialImpulseConstraintSolver::prepareConstraints(btPersistentManifold* manifoldPtr, const btContactSolverInfo& info,btIDebugDraw* debugDrawer) { (void)debugDrawer; btRigidBody* body0 = (btRigidBody*)manifoldPtr->getBody0(); btRigidBody* body1 = (btRigidBody*)manifoldPtr->getBody1(); //only necessary to refresh the manifold once (first iteration). The integration is done outside the loop { #ifdef FORCE_REFESH_CONTACT_MANIFOLDS manifoldPtr->refreshContactPoints(body0->getCenterOfMassTransform(),body1->getCenterOfMassTransform()); #endif //FORCE_REFESH_CONTACT_MANIFOLDS int numpoints = manifoldPtr->getNumContacts(); gTotalContactPoints += numpoints; btVector3 color(0,1,0); for (int i=0;i
getContactPoint(i); if (cp.getDistance() <= btScalar(0.)) { const btVector3& pos1 = cp.getPositionWorldOnA(); const btVector3& pos2 = cp.getPositionWorldOnB(); btVector3 rel_pos1 = pos1 - body0->getCenterOfMassPosition(); btVector3 rel_pos2 = pos2 - body1->getCenterOfMassPosition(); //this jacobian entry is re-used for all iterations btJacobianEntry jac(body0->getCenterOfMassTransform().getBasis().transpose(), body1->getCenterOfMassTransform().getBasis().transpose(), rel_pos1,rel_pos2,cp.m_normalWorldOnB,body0->getInvInertiaDiagLocal(),body0->getInvMass(), body1->getInvInertiaDiagLocal(),body1->getInvMass()); btScalar jacDiagAB = jac.getDiagonal(); btConstraintPersistentData* cpd = (btConstraintPersistentData*) cp.m_userPersistentData; if (cpd) { //might be invalid cpd->m_persistentLifeTime++; if (cpd->m_persistentLifeTime != cp.getLifeTime()) { //printf("Invalid: cpd->m_persistentLifeTime = %i cp.getLifeTime() = %i\n",cpd->m_persistentLifeTime,cp.getLifeTime()); new (cpd) btConstraintPersistentData; cpd->m_persistentLifeTime = cp.getLifeTime(); } else { //printf("Persistent: cpd->m_persistentLifeTime = %i cp.getLifeTime() = %i\n",cpd->m_persistentLifeTime,cp.getLifeTime()); } } else { //todo: should this be in a pool? void* mem = btAlignedAlloc(sizeof(btConstraintPersistentData),16); cpd = new (mem)btConstraintPersistentData; assert(cpd); totalCpd ++; //printf("totalCpd = %i Created Ptr %x\n",totalCpd,cpd); cp.m_userPersistentData = cpd; cpd->m_persistentLifeTime = cp.getLifeTime(); //printf("CREATED: %x . cpd->m_persistentLifeTime = %i cp.getLifeTime() = %i\n",cpd,cpd->m_persistentLifeTime,cp.getLifeTime()); } assert(cpd); cpd->m_jacDiagABInv = btScalar(1.) / jacDiagAB; //Dependent on Rigidbody A and B types, fetch the contact/friction response func //perhaps do a similar thing for friction/restutution combiner funcs... cpd->m_frictionSolverFunc = m_frictionDispatch[body0->m_frictionSolverType][body1->m_frictionSolverType]; cpd->m_contactSolverFunc = m_contactDispatch[body0->m_contactSolverType][body1->m_contactSolverType]; btVector3 vel1 = body0->getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body1->getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar rel_vel; rel_vel = cp.m_normalWorldOnB.dot(vel); btScalar combinedRestitution = cp.m_combinedRestitution; cpd->m_penetration = cp.getDistance();///btScalar(info.m_numIterations); cpd->m_friction = cp.m_combinedFriction; cpd->m_restitution = restitutionCurve(rel_vel, combinedRestitution); if (cpd->m_restitution <= btScalar(0.)) { cpd->m_restitution = btScalar(0.0); }; //restitution and penetration work in same direction so //rel_vel btScalar penVel = -cpd->m_penetration/info.m_timeStep; if (cpd->m_restitution > penVel) { cpd->m_penetration = btScalar(0.); } btScalar relaxation = info.m_damping; if (m_solverMode & SOLVER_USE_WARMSTARTING) { cpd->m_appliedImpulse *= relaxation; } else { cpd->m_appliedImpulse =btScalar(0.); } //for friction cpd->m_prevAppliedImpulse = cpd->m_appliedImpulse; //re-calculate friction direction every frame, todo: check if this is really needed btPlaneSpace1(cp.m_normalWorldOnB,cpd->m_frictionWorldTangential0,cpd->m_frictionWorldTangential1); #define NO_FRICTION_WARMSTART 1 #ifdef NO_FRICTION_WARMSTART cpd->m_accumulatedTangentImpulse0 = btScalar(0.); cpd->m_accumulatedTangentImpulse1 = btScalar(0.); #endif //NO_FRICTION_WARMSTART btScalar denom0 = body0->computeImpulseDenominator(pos1,cpd->m_frictionWorldTangential0); btScalar denom1 = body1->computeImpulseDenominator(pos2,cpd->m_frictionWorldTangential0); btScalar denom = relaxation/(denom0+denom1); cpd->m_jacDiagABInvTangent0 = denom; denom0 = body0->computeImpulseDenominator(pos1,cpd->m_frictionWorldTangential1); denom1 = body1->computeImpulseDenominator(pos2,cpd->m_frictionWorldTangential1); denom = relaxation/(denom0+denom1); cpd->m_jacDiagABInvTangent1 = denom; btVector3 totalImpulse = #ifndef NO_FRICTION_WARMSTART cpd->m_frictionWorldTangential0*cpd->m_accumulatedTangentImpulse0+ cpd->m_frictionWorldTangential1*cpd->m_accumulatedTangentImpulse1+ #endif //NO_FRICTION_WARMSTART cp.m_normalWorldOnB*cpd->m_appliedImpulse; /// { btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB); cpd->m_angularComponentA = body0->getInvInertiaTensorWorld()*torqueAxis0; btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB); cpd->m_angularComponentB = body1->getInvInertiaTensorWorld()*torqueAxis1; } { btVector3 ftorqueAxis0 = rel_pos1.cross(cpd->m_frictionWorldTangential0); cpd->m_frictionAngularComponent0A = body0->getInvInertiaTensorWorld()*ftorqueAxis0; } { btVector3 ftorqueAxis1 = rel_pos1.cross(cpd->m_frictionWorldTangential1); cpd->m_frictionAngularComponent1A = body0->getInvInertiaTensorWorld()*ftorqueAxis1; } { btVector3 ftorqueAxis0 = rel_pos2.cross(cpd->m_frictionWorldTangential0); cpd->m_frictionAngularComponent0B = body1->getInvInertiaTensorWorld()*ftorqueAxis0; } { btVector3 ftorqueAxis1 = rel_pos2.cross(cpd->m_frictionWorldTangential1); cpd->m_frictionAngularComponent1B = body1->getInvInertiaTensorWorld()*ftorqueAxis1; } /// //apply previous frames impulse on both bodies body0->applyImpulse(totalImpulse, rel_pos1); body1->applyImpulse(-totalImpulse, rel_pos2); } } } } btScalar btSequentialImpulseConstraintSolver::solveCombinedContactFriction(btRigidBody* body0,btRigidBody* body1, btManifoldPoint& cp, const btContactSolverInfo& info,int iter,btIDebugDraw* debugDrawer) { btScalar maxImpulse = btScalar(0.); { btVector3 color(0,1,0); { if (cp.getDistance() <= btScalar(0.)) { if (iter == 0) { if (debugDrawer) debugDrawer->drawContactPoint(cp.m_positionWorldOnB,cp.m_normalWorldOnB,cp.getDistance(),cp.getLifeTime(),color); } { //btConstraintPersistentData* cpd = (btConstraintPersistentData*) cp.m_userPersistentData; btScalar impulse = resolveSingleCollisionCombined( *body0,*body1, cp, info); if (maxImpulse < impulse) maxImpulse = impulse; } } } } return maxImpulse; } btScalar btSequentialImpulseConstraintSolver::solve(btRigidBody* body0,btRigidBody* body1, btManifoldPoint& cp, const btContactSolverInfo& info,int iter,btIDebugDraw* debugDrawer) { btScalar maxImpulse = btScalar(0.); { btVector3 color(0,1,0); { if (cp.getDistance() <= btScalar(0.)) { if (iter == 0) { if (debugDrawer) debugDrawer->drawContactPoint(cp.m_positionWorldOnB,cp.m_normalWorldOnB,cp.getDistance(),cp.getLifeTime(),color); } { btConstraintPersistentData* cpd = (btConstraintPersistentData*) cp.m_userPersistentData; btScalar impulse = cpd->m_contactSolverFunc( *body0,*body1, cp, info); if (maxImpulse < impulse) maxImpulse = impulse; } } } } return maxImpulse; } btScalar btSequentialImpulseConstraintSolver::solveFriction(btRigidBody* body0,btRigidBody* body1, btManifoldPoint& cp, const btContactSolverInfo& info,int iter,btIDebugDraw* debugDrawer) { (void)debugDrawer; (void)iter; { btVector3 color(0,1,0); { if (cp.getDistance() <= btScalar(0.)) { btConstraintPersistentData* cpd = (btConstraintPersistentData*) cp.m_userPersistentData; cpd->m_frictionSolverFunc( *body0,*body1, cp, info); } } } return btScalar(0.); } void btSequentialImpulseConstraintSolver::reset() { m_btSeed2 = 0; }
btSequentialImpulseConstraintSolver.cpp
网页地址
文件地址
上一页
14/21
下一页
下载
( 39 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.