x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btRigidBody.cpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletDynamics\Dynamics\btRigidBody.cpp
旋转
特效
属性
历史版本
/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btRigidBody.h" #include "BulletCollision/CollisionShapes/btConvexShape.h" #include "LinearMath/btMinMax.h" #include "LinearMath/btTransformUtil.h" #include "LinearMath/btMotionState.h" #include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" //'temporarily' global variables btScalar gDeactivationTime = btScalar(2.); bool gDisableDeactivation = false; static int uniqueId = 0; btRigidBody::btRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo) { setupRigidBody(constructionInfo); } btRigidBody::btRigidBody(btScalar mass, btMotionState *motionState, btCollisionShape *collisionShape, const btVector3 &localInertia) { btRigidBodyConstructionInfo cinfo(mass,motionState,collisionShape,localInertia); setupRigidBody(cinfo); } void btRigidBody::setupRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo) { m_linearVelocity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); m_angularFactor = btScalar(1.); m_gravity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)), m_linearDamping = btScalar(0.); m_angularDamping = btScalar(0.5); m_linearSleepingThreshold = constructionInfo.m_linearSleepingThreshold; m_angularSleepingThreshold = constructionInfo.m_angularSleepingThreshold; m_optionalMotionState = constructionInfo.m_motionState; m_contactSolverType = 0; m_frictionSolverType = 0; m_additionalDamping = constructionInfo.m_additionalDamping; m_additionalDampingFactor = constructionInfo.m_additionalDampingFactor; m_additionalLinearDampingThresholdSqr = constructionInfo.m_additionalLinearDampingThresholdSqr; m_additionalAngularDampingThresholdSqr = constructionInfo.m_additionalAngularDampingThresholdSqr; m_additionalAngularDampingFactor = constructionInfo.m_additionalAngularDampingFactor; if (m_optionalMotionState) { m_optionalMotionState->getWorldTransform(m_worldTransform); } else { m_worldTransform = constructionInfo.m_startWorldTransform; } m_interpolationWorldTransform = m_worldTransform; m_interpolationLinearVelocity.setValue(0,0,0); m_interpolationAngularVelocity.setValue(0,0,0); //moved to btCollisionObject m_friction = constructionInfo.m_friction; m_restitution = constructionInfo.m_restitution; m_collisionShape = constructionInfo.m_collisionShape; m_debugBodyId = uniqueId++; //m_internalOwner is to allow upcasting from collision object to rigid body m_internalOwner = this; setMassProps(constructionInfo.m_mass, constructionInfo.m_localInertia); setDamping(constructionInfo.m_linearDamping, constructionInfo.m_angularDamping); updateInertiaTensor(); } void btRigidBody::predictIntegratedTransform(btScalar timeStep,btTransform& predictedTransform) { btTransformUtil::integrateTransform(m_worldTransform,m_linearVelocity,m_angularVelocity,timeStep,predictedTransform); } void btRigidBody::saveKinematicState(btScalar timeStep) { //todo: clamp to some (user definable) safe minimum timestep, to limit maximum angular/linear velocities if (timeStep != btScalar(0.)) { //if we use motionstate to synchronize world transforms, get the new kinematic/animated world transform if (getMotionState()) getMotionState()->getWorldTransform(m_worldTransform); btVector3 linVel,angVel; btTransformUtil::calculateVelocity(m_interpolationWorldTransform,m_worldTransform,timeStep,m_linearVelocity,m_angularVelocity); m_interpolationLinearVelocity = m_linearVelocity; m_interpolationAngularVelocity = m_angularVelocity; m_interpolationWorldTransform = m_worldTransform; //printf("angular = %f %f %f\n",m_angularVelocity.getX(),m_angularVelocity.getY(),m_angularVelocity.getZ()); } } void btRigidBody::getAabb(btVector3& aabbMin,btVector3& aabbMax) const { getCollisionShape()->getAabb(m_worldTransform,aabbMin,aabbMax); } void btRigidBody::setGravity(const btVector3& acceleration) { if (m_inverseMass != btScalar(0.0)) { m_gravity = acceleration * (btScalar(1.0) / m_inverseMass); } } void btRigidBody::setDamping(btScalar lin_damping, btScalar ang_damping) { m_linearDamping = GEN_clamped(lin_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); m_angularDamping = GEN_clamped(ang_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); } ///applyDamping damps the velocity, using the given m_linearDamping and m_angularDamping void btRigidBody::applyDamping(btScalar timeStep) { m_linearVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_linearDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); m_angularVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_angularDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); if (m_additionalDamping) { //Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc. //Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete if ((m_angularVelocity.length2() < m_additionalAngularDampingThresholdSqr) && (m_linearVelocity.length2() < m_additionalLinearDampingThresholdSqr)) { m_angularVelocity *= m_additionalDampingFactor; m_linearVelocity *= m_additionalDampingFactor; } btScalar speed = m_linearVelocity.length(); if (speed < m_linearDamping) { btScalar dampVel = btScalar(0.005); if (speed > dampVel) { btVector3 dir = m_linearVelocity.normalized(); m_linearVelocity -= dir * dampVel; } else { m_linearVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); } } btScalar angSpeed = m_angularVelocity.length(); if (angSpeed < m_angularDamping) { btScalar angDampVel = btScalar(0.005); if (angSpeed > angDampVel) { btVector3 dir = m_angularVelocity.normalized(); m_angularVelocity -= dir * angDampVel; } else { m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); } } } } void btRigidBody::applyGravity() { if (isStaticOrKinematicObject()) return; applyCentralForce(m_gravity); } void btRigidBody::proceedToTransform(const btTransform& newTrans) { setCenterOfMassTransform( newTrans ); } void btRigidBody::setMassProps(btScalar mass, const btVector3& inertia) { if (mass == btScalar(0.)) { m_collisionFlags |= btCollisionObject::CF_STATIC_OBJECT; m_inverseMass = btScalar(0.); } else { m_collisionFlags &= (~btCollisionObject::CF_STATIC_OBJECT); m_inverseMass = btScalar(1.0) / mass; } m_invInertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x(): btScalar(0.0), inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y(): btScalar(0.0), inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z(): btScalar(0.0)); } void btRigidBody::updateInertiaTensor() { m_invInertiaTensorWorld = m_worldTransform.getBasis().scaled(m_invInertiaLocal) * m_worldTransform.getBasis().transpose(); } void btRigidBody::integrateVelocities(btScalar step) { if (isStaticOrKinematicObject()) return; m_linearVelocity += m_totalForce * (m_inverseMass * step); m_angularVelocity += m_invInertiaTensorWorld * m_totalTorque * step; #define MAX_ANGVEL SIMD_HALF_PI /// clamp angular velocity. collision calculations will fail on higher angular velocities btScalar angvel = m_angularVelocity.length(); if (angvel*step > MAX_ANGVEL) { m_angularVelocity *= (MAX_ANGVEL/step) /angvel; } } btQuaternion btRigidBody::getOrientation() const { btQuaternion orn; m_worldTransform.getBasis().getRotation(orn); return orn; } void btRigidBody::setCenterOfMassTransform(const btTransform& xform) { if (isStaticOrKinematicObject()) { m_interpolationWorldTransform = m_worldTransform; } else { m_interpolationWorldTransform = xform; } m_interpolationLinearVelocity = getLinearVelocity(); m_interpolationAngularVelocity = getAngularVelocity(); m_worldTransform = xform; updateInertiaTensor(); } bool btRigidBody::checkCollideWithOverride(btCollisionObject* co) { btRigidBody* otherRb = btRigidBody::upcast(co); if (!otherRb) return true; for (int i = 0; i < m_constraintRefs.size(); ++i) { btTypedConstraint* c = m_constraintRefs[i]; if (&c->getRigidBodyA() == otherRb || &c->getRigidBodyB() == otherRb) return false; } return true; } void btRigidBody::addConstraintRef(btTypedConstraint* c) { int index = m_constraintRefs.findLinearSearch(c); if (index == m_constraintRefs.size()) m_constraintRefs.push_back(c); m_checkCollideWith = true; } void btRigidBody::removeConstraintRef(btTypedConstraint* c) { m_constraintRefs.remove(c); m_checkCollideWith = m_constraintRefs.size() > 0; }
btRigidBody.cpp
网页地址
文件地址
上一页
6/10
下一页
下载
( 9 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.